知识抽取与挖掘
本文是王昊奋老师《知识图谱》系列笔记第三篇。
知识抽取,即从不同来源、不同结构的数据中进行知识提取,形成知识(结构化数据)存入到知识图谱。大体的任务分类与对应技术如下图所示:
其中最重要的是非结构数据(纯文本)的抽取(第一章)
非结构化信息抽取三个最重要/最受关注的子任务:
本节知识包含太多内容(根本写不完),专门开一篇博客详细学习,相关算法与实验操作。《03.1 知识图谱 实体识别》
实体抽取或者说命名实体识别(NER)在信息抽取中扮演着重要角色,主要抽取的是文本中的原子信息元素,如人名、组织/机构名、地理位置、事件/日期、字符值、金额值等,具体的标签定义可根据任务不同而调整。实体抽取任务有两个关键词:find & classify,找到命名实体,并进行分类。
命名实体识别主要分类,一般包括 3 大类(实体类、时间类和数字类)和 7 小类(人名、地名、组织名、机构名、时间、日期、货币和百分比)。但随着 NLP 任务的不断扩充,在特定领域中会出现特定的类别,比如医药领域中,药名、疾病等类别。
举个例子:
Training标准流程:
Testing标准流程:
看一下最常用的两种 sequence labeling 的编码方式:IO encoding和IOB encoding
在 Stanford NER 里,用的其实是 IO encoding,有两个原因:
IO encoding 确定 boundary 的依据是,如果有连续的 token 类别不为 O,那么类别相同,同属一个 NE;类别不相同,就分割,相同的 sequence 属同一个 NE。而实际上,两个 NE 是相同类别这样的现象出现的很少,如上面的例子,Sue,Mengqiu Huang 两个同是 PER 类别,并不多见,更重要的是,在实践中,虽然 IOB encoding 能规定 boundary,而实际上它也很少能做对,它也会把 Sue Mengqiu Huang 分为同一个 PER,这主要是因为更多的类别会带来数据的稀疏。
NER一直是NLP领域中的研究热点,从早期基于词典和规则的方法,到传统机器学习的方法,到近年来基于深度学习的方法,NER研究进展的大概趋势大致如下图所示。
NLP 的很多数据都是序列类型,需要使用序列模型解决。像 sequence of characters, words, phrases, lines, sentences,我们可以把这些任务当做是给每一个 item 打标签,如下图:
本节知识包含太多内容(根本写不完),专门开一篇博客详细学习,相关算法与实验操作。《03.1 知识图谱 实体识别》
NER 中模型发展的历史:有一些,大致如下:MLP->LSTM->LSTM/CNN+CRF->BiLSTM+CRF- >BiLSTM+CNN+CRF。
本节知识包含太多内容(根本写不完),专门开一篇博客详细学习,相关算法与实验操作。《03.1 知识图谱 实体识别》
关系抽取是从文本中抽取出两个或多个实体之间的语义关系。它是信息抽取研究领域的任务之一。如:
王健林谈儿子王思聪:我期望他稳重一点。
-> 父子关系 (王健林, 王思聪)
关系抽取 主要方法有下面几类:
基于模板的方法在小规模数据集上容易实现且构建简单,缺点为难以维护、可移植性差、模板有可能需要专家构建。
首先定义一套种子模板,如:
其中的触发词为老婆、妻子、配偶等。根据这些触发词找出夫妻关系这种关系,同时通过命名实体识别给出关系的参与方。
以动词为起点,构建规则,对节点上的词性和边上的依存关系进行限定。一般情况下是形容词+名字或动宾短语等情况,因此相当于以动词为中心结构做的Pattern。其执行流程为:
在给定实体对的情况下,根据句子上下文对实体关系进行预测,执行流程为:
其优点为准确率高,标注的数据越多越准确。缺点为标注数据的成本太高,不能扩展新的关系。
监督学习关系抽取有两种模式:管道模型Pipeline model和联合模型joint model。
即识别实体和关系分类是完全分离的两个过程,不会相互影响,关系的识别依赖于实体识别的效果,这样的好处的各模型相互独立,设计上较为容易,但误差会逐层传递,步骤太多有可能导致后续不可用。
将实体识别和关系分类一起做,在一个模型中完成。
如上图论文中,识别“出生地关系 born in ” 把实体识别模型(biLSTM+CRF)与关系抽取模型(树形依存关系LSTM) 一起训练,缺点是参数多训练慢,优势是精度高。
前面的监督学习效果虽好,但有标注数据集的获取困难。因此可以借助半监督学习的方法,此处又分为远程监督学习和Bootstrapping方法两种。
远程监督流程为:
该方法认为若两个实体如果在知识库中存在某种关系,则包含该两个实体的非结构化句子均能表示出这种关系。例子如下:
现在 有一条纯文本“乔布斯是苹果公司的联合创始人和CEO”我们没有任何标签;
但是在我们的知识库中存在“创始人(乔布斯,苹果公司)”这样一条规则。
那么就认为出现乔布斯和苹果公司的句子就是表述创始人这项关系。
因此可构建训练正例:“乔布斯是苹果公司的联合创始人和CEO”。 的分类标签为“创始人”。
远程监督可以利用丰富的知识库信息,减少一定的人工标注,但它的假设过于肯定,如乔布斯被赶出苹果公司。这句话表达的就不是创始人的例子,因此会引入大量的噪声,存在语义漂移现象。同时由于是在知识库中抽取存在的实体关系对,因此很难发现新的关系。
不手写模版 而是学习模版:利用已知的“关系”所拥有的模版,去搜索新的模版。
这个方法在很多任务中都有提到,其执行流程为:
该方法的优点为构建成本低,适合大规模的构建,同时还可以发现新的(隐含的)关系。缺点为对初始给定的种子集敏感,存在语义漂移现象,结果的准确率较低等。
从自然语言中抽取出用户感兴趣的事件信息,并以结构化的形式呈现出来,例如事件发生的时间、地点、发生原因、参与者等。如:
事件抽取任务最基础的部分包括:
此外,事件抽取任务还包括:
对于事件抽取,也可分为Pipeline方法和联合训练的方法。
有监督的事件抽取方法的标准流程一种pipeline的方法,将事件抽取任务转化为多阶段的分类问题,需要的分类器包括:
可以看到,这个流程还是蛮长的,因此Pipeline存在的误差传递问题在这里格外严重,因此我们需要联合训练:
所谓结构化数据就是指类似于关系库中表格那种形式的数据,他们往往各项之间存在明确的关系名称和对应关系。
因此我们可以简单的将其转化为RDF或其他形式的知识库内容。
一种常用的W3C推荐的映射语言是R2RML(RDB2RDF)。一种映射结果如下图所示:
现有的工具免费的有D2R,Virtuoso、MOrph等。
半结构化数据是指类似于百科、商品列表等那种本身存在一定结构但需要进一步提取整理的数据。
现在我们的目标网站是部分结构化的,如:
包装器是一个能够将数据从HTML网页中抽取出来,并且将它们还原为结构化的数据的软件程序(爬虫)。使用它提取信息流程为:
对于一般的有规律的页面,我们可以使用正则表达式的方式写出XPath和CSS选择器表达式来提取网页中的元素。但这样的通用性很差,因此也可以通过包装器归纳这种基于有监督学习的方法,自动的从标注好的训练样例集合中学习数据抽取规则,用于从其他相同标记或相同网页模板抽取目标数据。
对于监督学习我们知道标注数据是它的短板,因此我们想到自动抽取的方法。网站中的数据通常是用很少的一些模板来编码的,通过挖掘多个数据记录中的重复模式来寻找这些模板是可能的。