【opencv人脸识别2】从视频中检测人脸

【opencv人脸识别】从视频中检测人脸

    1.从视频中识别人脸和人的眼睛

    2. 从视频中检测人脸、眼睛、鼻子、嘴巴

 

    上一节,讲了如何从图片中检测人脸,这一节讲如何从视频中检测人脸。 在opencv自带的说明中便有从视频中检测人脸的例子,在..\opencv3_4\opencv\sources\samples\cpp\tutorial_code\objectDetection\文件夹下有objectDetection.cpp,将此例子稍作修改,就可以为我们所用。

1.从视频中识别人脸和人的眼睛

    关于视频的操作,主要如下:

    定义摄像头->打开摄像头->读取视频帧->转而为对图片的操作(一帧就相当于一幅图片)

VideoCapture capture; //定义摄像头捕捉 变量
Mat frame; 
capture.open(0); //打开摄像头
while (capture.read(frame)) //读取帧
{
//进行人脸检测
//显示
}

 

    视频人脸检测的代码:

 

//face_detect_from_video.cpp 定义控制台应用程序的入口点。
//从视频中识别人脸和人的眼睛
#include "stdafx.h"
#include "opencv2/objdetect.hpp"
#include "opencv2/highgui.hpp"
#include "opencv2/imgproc.hpp"

#include 

using namespace std;
using namespace cv;

/** Function Headers */
void detectAndDisplay(Mat frame);

/** Global variables */
String face_cascade_name, eyes_cascade_name;
CascadeClassifier face_cascade;
CascadeClassifier eyes_cascade;
String window_name = "Capture - Face detection";

/** @function main */
int main(int argc, const char** argv)
{
	face_cascade_name = "./xml/haarcascade_frontalface_alt.xml";
	eyes_cascade_name = "./xml/haarcascade_eye.xml";
	VideoCapture capture;
	Mat frame;

	//-- 1. Load the cascades
	if (!face_cascade.load(face_cascade_name)) { printf("--(!)Error loading face cascade\n"); return -1; };
	if (!eyes_cascade.load(eyes_cascade_name)) { printf("--(!)Error loading eyes cascade\n"); return -1; };

	//-- 2. Read the video stream
	capture.open(0); //打开摄像头
	if (!capture.isOpened()) { printf("--(!)Error opening video capture\n"); return -1; }

	while (capture.read(frame)) //读取帧
	{
		if (frame.empty())
		{
			printf(" --(!) No captured frame -- Break!");
			break;
		}

		//-- 3. Apply the classifier to the frame
		detectAndDisplay(frame);

		if (waitKey(10) == 'k') { break; } // escape
	}
	return 0;
}

/** @function detectAndDisplay */
void detectAndDisplay(Mat frame)
{
	std::vector faces;
	Mat frame_gray;

	cvtColor(frame, frame_gray, COLOR_BGR2GRAY);  //BGR 转化为灰度图
	equalizeHist(frame_gray, frame_gray);   //直方图均衡化

	//-- Detect faces
	face_cascade.detectMultiScale(frame_gray, faces, 1.1, 2, 0 | CASCADE_SCALE_IMAGE, Size(60, 60));

	for (size_t i = 0; i < faces.size(); i++)
	{
		Point center(faces[i].x + faces[i].width / 2, faces[i].y + faces[i].height / 2); // 人脸中心坐标
		ellipse(frame, center, Size(faces[i].width / 2, faces[i].height / 2), 0, 0, 360, Scalar(255, 0, 255), 4, 8, 0); // 椭圆

		Mat faceROI = frame_gray(faces[i]);
		std::vector eyes;

		//-- In each face, detect eyes
		eyes_cascade.detectMultiScale(faceROI, eyes, 1.1, 2, 0 | CASCADE_SCALE_IMAGE, Size(30, 30));

		for (size_t j = 0; j < eyes.size(); j++)
		{
			Point eye_center(faces[i].x + eyes[j].x + eyes[j].width / 2, faces[i].y + eyes[j].y + eyes[j].height / 2); //眼睛的中心
			int radius = cvRound((eyes[j].width + eyes[j].height)*0.25); //取整
			circle(frame, eye_center, radius, Scalar(255, 0, 0), 4, 8, 0);
		}
	}
	//-- Show what you got
	imshow(window_name, frame);
}
从视频中识别人脸和人的眼睛
#include "stdafx.h"
#include "opencv2/objdetect.hpp"
#include "opencv2/highgui.hpp"
#include "opencv2/imgproc.hpp"

#include 

using namespace std;
using namespace cv;

/** Function Headers */
void detectAndDisplay(Mat frame);

/** Global variables */
String face_cascade_name, eyes_cascade_name;
CascadeClassifier face_cascade;
CascadeClassifier eyes_cascade;
String window_name = "Capture - Face detection";

/** @function main */
int main(int argc, const char** argv)
{
	face_cascade_name = "./xml/haarcascade_frontalface_alt.xml";
	eyes_cascade_name = "./xml/haarcascade_eye.xml";
	VideoCapture capture;
	Mat frame;

	//-- 1. Load the cascades
	if (!face_cascade.load(face_cascade_name)) { printf("--(!)Error loading face cascade\n"); return -1; };
	if (!eyes_cascade.load(eyes_cascade_name)) { printf("--(!)Error loading eyes cascade\n"); return -1; };

	//-- 2. Read the video stream
	capture.open(0); //打开摄像头
	if (!capture.isOpened()) { printf("--(!)Error opening video capture\n"); return -1; }

	while (capture.read(frame)) //读取帧
	{
		if (frame.empty())
		{
			printf(" --(!) No captured frame -- Break!");
			break;
		}

		//-- 3. Apply the classifier to the frame
		detectAndDisplay(frame);

		if (waitKey(10) == 'k') { break; } // escape
	}
	return 0;
}

/** @function detectAndDisplay */
void detectAndDisplay(Mat frame)
{
	std::vector faces;
	Mat frame_gray;

	cvtColor(frame, frame_gray, COLOR_BGR2GRAY);  //BGR 转化为灰度图
	equalizeHist(frame_gray, frame_gray);   //直方图均衡化

	//-- Detect faces
	face_cascade.detectMultiScale(frame_gray, faces, 1.1, 2, 0 | CASCADE_SCALE_IMAGE, Size(60, 60));

	for (size_t i = 0; i < faces.size(); i++)
	{
		Point center(faces[i].x + faces[i].width / 2, faces[i].y + faces[i].height / 2); // 人脸中心坐标
		ellipse(frame, center, Size(faces[i].width / 2, faces[i].height / 2), 0, 0, 360, Scalar(255, 0, 255), 4, 8, 0); // 椭圆

		Mat faceROI = frame_gray(faces[i]);
		std::vector eyes;

		//-- In each face, detect eyes
		eyes_cascade.detectMultiScale(faceROI, eyes, 1.1, 2, 0 | CASCADE_SCALE_IMAGE, Size(30, 30));

		for (size_t j = 0; j < eyes.size(); j++)
		{
			Point eye_center(faces[i].x + eyes[j].x + eyes[j].width / 2, faces[i].y + eyes[j].y + eyes[j].height / 2); //眼睛的中心
			int radius = cvRound((eyes[j].width + eyes[j].height)*0.25); //取整
			circle(frame, eye_center, radius, Scalar(255, 0, 0), 4, 8, 0);
		}
	}
	//-- Show what you got
	imshow(window_name, frame);
}

 

    运行结果:

 

                    【opencv人脸识别2】从视频中检测人脸_第1张图片

 

2. 从视频中检测人脸、眼睛、鼻子、嘴巴

    此部分结合了之前讲的识别人脸特征:运行opencv3.4中的demo--facial_features.cpp

    将上述第一部分的从视频中识别人脸和眼睛,再加上鼻子、嘴巴的识别,可实现从视频中检测人脸特征。

    代码如下:

//face_recog_from_video.cpp 定义控制台应用程序的入口点。

#include "stdafx.h"
#include "opencv2/objdetect.hpp"
#include "opencv2/highgui.hpp"
#include "opencv2/imgproc.hpp"

#include 
#include
using namespace std;
using namespace cv;

/** Function Headers */
void detectAndDisplay(Mat frame);

/** Global variables */
String face_cascade_name, eyes_cascade_name, nose_cascade_name , mouth_cascade_name;
CascadeClassifier face_cascade;
CascadeClassifier eyes_cascade;
CascadeClassifier nose_cascade;
CascadeClassifier mouth_cascade;
String window_name = "Capture - Face detection";

/** @function main */
int main(int argc, const char** argv)
{
	face_cascade_name = "./xml/haarcascade_frontalface_alt.xml";
	eyes_cascade_name = "./xml/haarcascade_eye.xml";
	nose_cascade_name = "./xml/haarcascade_mcs_nose.xml";
	mouth_cascade_name = "./xml/haarcascade_mcs_mouth.xml";

	VideoCapture capture;
	Mat frame;

	//-- 1. Load the cascades
	if (!face_cascade.load(face_cascade_name)) { printf("--(!)Error loading face cascade\n"); return -1; };
	if (!eyes_cascade.load(eyes_cascade_name)) { printf("--(!)Error loading eyes cascade\n"); return -1; };
	if (!nose_cascade.load(nose_cascade_name)) { printf("--(!)Error loading nose cascade\n"); return -1; };
	if (!mouth_cascade.load(mouth_cascade_name)) { printf("--(!)Error loading mouth cascade\n"); return -1; };

	//-- 2. Read the video stream
	capture.open(0); //打开摄像头
	if (!capture.isOpened()) { printf("--(!)Error opening video capture\n"); return -1; }

	while (capture.read(frame)) //读取帧
	{
		if (frame.empty())
		{
			printf(" --(!) No captured frame -- Break!");
			break;
		}

		//-- 3. Apply the classifier to the frame
		detectAndDisplay(frame);

		if (waitKey(10) == 'k') { break; } // escape
	}
	return 0;
}

/** @function detectAndDisplay */
void detectAndDisplay(Mat frame)
{
	std::vector faces;
	Mat frame_gray;

	cvtColor(frame, frame_gray, COLOR_BGR2GRAY);  //BGR 转化为灰度图
	equalizeHist(frame_gray, frame_gray);   //直方图均衡化

											//-- Detect faces
	face_cascade.detectMultiScale(frame_gray, faces, 1.1, 2, 0 | CASCADE_SCALE_IMAGE, Size(60, 60));

	for (size_t i = 0; i < faces.size(); i++)
	{
		Point center(faces[i].x + faces[i].width / 2, faces[i].y + faces[i].height / 2); // 人脸中心坐标
		ellipse(frame, center, Size(faces[i].width / 2, faces[i].height / 2), 0, 0, 360, Scalar(255, 0, 255), 4, 8, 0); // 椭圆

		Mat faceROI = frame_gray(faces[i]);
		std::vector eyes;
		std::vector noses;
		std::vector mouths;

		//-- In each face, detect eyes、nose、mouth
		eyes_cascade.detectMultiScale(faceROI, eyes, 1.1, 2, 0 | CASCADE_SCALE_IMAGE, Size(30, 30));
		nose_cascade.detectMultiScale(faceROI, noses, 1.1, 2, 0 | CASCADE_SCALE_IMAGE, Size(30, 30));
		mouth_cascade.detectMultiScale(faceROI, mouths, 1.1, 2, 0 | CASCADE_SCALE_IMAGE, Size(30, 30));

		// eyes
		Point eye_center;
		for (size_t j = 0; j < eyes.size(); j++)
		{
			eye_center = Point(faces[i].x + eyes[j].x + eyes[j].width / 2, faces[i].y + eyes[j].y + eyes[j].height / 2); //眼睛的中心
			if (eye_center.x>faces[i].x && eye_center.y > faces[i].y) // 确保眼睛在脸上,其实前边检测时,已经保证了这一点
			{
				int radius = cvRound((eyes[j].width + eyes[j].height)*0.25); //取整
				circle(frame, eye_center, radius, Scalar(255, 0, 0), 4, 8, 0);
			}
		}
		// nose
		Point nose_center;
		if (noses.size() > 0)
		{
			nose_center = Point(faces[i].x + noses[0].x + noses[0].width / 2, faces[i].y + noses[0].y + noses[0].height / 2); //鼻子的中心
			if (nose_center.y > eye_center.y) //确保鼻子在眼睛下边
			{
				rectangle(frame, Point(faces[i].x + noses[0].x, faces[i].y+ noses[0].y), Point(faces[i].x + noses[0].x + noses[0].width, faces[i].y + noses[0].y + noses[0].height), Scalar(0, 255, 0), 3, 8, 0); //Point(noses[0].x, noses[0].y), Point(noses[0].x + noses[0].width, noses[0].y + noses[0].height)
				//int radius = cvRound((noses[0].width + noses[0].height)*0.25); //取整
				//circle(frame, nose_center, radius, Scalar(0, 255,0), 4, 8, 0);
				std::cout << "nose!\n";
			}
		}

		// mouth
		if (mouths.size() > 0)
		{
			Point mouth_center(faces[i].x + mouths[0].x + mouths[0].width / 2, faces[i].y + mouths[0].y + mouths[0].height / 2); //嘴巴的中心
			if (mouth_center.y > nose_center.y) // 确保嘴巴在鼻子下边
			{
				int radius = cvRound((mouths[0].width + mouths[0].height)*0.25); //取整
				circle(frame, mouth_center, radius, Scalar(0, 0, 255), 4, 8, 0);
				std::cout << "mouth!\n";
			}
			
		}
	}
	//-- Show what you got
	imshow(window_name, frame);
}

 

    运行结果:

 

            【opencv人脸识别2】从视频中检测人脸_第2张图片

    由结果可看出,较好的检测出来人脸及人脸特征,其中,粉色区域为face、蓝色为eye、绿色为nose、红色为mouth。    

    但多次试验会发现,误判的概率很高,所以模型与程序尚有较大改进空间。

 注意:要对眼睛嘴巴鼻子的位置进行限定,可一定程度上减少误判。

 -------------------------------------------         END      -------------------------------------

 

CSDN:大姨妈V 

微信公众号:happyZhou

【opencv人脸识别2】从视频中检测人脸_第3张图片

版权声明:本文为博主原创文章,转载请附上博文链接!

你可能感兴趣的:(opencv,学习opencv)