CVPR 2020的paper list已经放出来了,链接如下:
http://cvpr2020.thecvf.com/program/main-conference
CVPR 2020的录用结果已经出来挺久了,不过估计还得过一段时间才能给出完整的接收列表。近期在关注目标检测相关的论文,因此收集一些今年CVPR最新的论文来看看,持续更新中。
[1] Bridging the Gap Between Anchor-based and Anchor-free Detection via Adaptive Training Sample Selection
paper: https://arxiv.org/abs/1912.02424
code: https://github.com/sfzhang15/ATSS
[2] EfficientDet: Scalable and Efficient Object Detection
paper: https://arxiv.org/abs/1911.09070
code: https://github.com/google/automl/tree/master/efficientdet
[3] Few-Shot Object Detection with Attention-RPN and Multi-Relation Detector
paper: https://arxiv.org/abs/1908.01998
code: TBD
dataset: https://github.com/fanq15/Few-Shot-Object-Detection-Dataset
[4] Hit-Detector: Hierarchical Trinity Architecture Search for Object Detection
paper: https://arxiv.org/abs/2003.11818
code: https://github.com/ggjy/HitDet.pytorch
[5] BiDet: An Efficient Binarized Object Detector
paper: https://arxiv.org/abs/2003.03961
code: https://github.com/ZiweiWangTHU/BiDet
[6] Harmonizing Transferability and Discriminability for Adapting Object Detectors
paper: https://arxiv.org/abs/2003.06297
code: https://github.com/chaoqichen/HTCN
[7] Noise-Aware Fully Webly Supervised Object Detection
paper: TBD
code: https://github.com/shenyunhang/NA-fWebSOD
[8] NAS-FCOS: fast neural architecture search for object detection
paper: https://arxiv.org/abs/1906.04423
code: TBD
[9] CentripetalNet: Pursuing High-quality Keypoint Pairs for Object Detection
paper: https://arxiv.org/abs/2003.09119
code: https://github.com/KiveeDong/CentripetalNet
[10] Cross-domain Object Detection through Coarse-to-Fine Feature Adaptation
paper: https://arxiv.org/abs/2003.10275
code: TBD
[11] Revisiting the Sibling Head in Object Detector
paper: https://arxiv.org/abs/2003.07540
code: https://github.com/Sense-X/TSD
[12] DR Loss: Improving Object Detection by Distributional Ranking
paper: https://arxiv.org/abs/1907.10156
code: https://github.com/idstcv/DR_loss
[13] Exploring Categorical Regularization for Domain Adaptive Object Detection
paper: https://arxiv.org/abs/2003.09152
code: https://github.com/Megvii-Nanjing/CR-DA-DET
[14] Detection in Crowded Scenes: One Proposal, Multiple Predictions
paper: https://arxiv.org/abs/2003.09163
code: https://github.com/megvii-model/CrowdDetection
[15] Camouflaged Object Detection
paper: http://mftp.mmcheng.net/Papers/20CVPR_Camouflag.pdf
code: TBD
[16] Scale-Equalizing Pyramid Convolution for Object Detection
paper: https://arxiv.org/abs/2005.03101
code: https://github.com/jshilong/SEPC
[17] Instance-aware, Context-focused, and Memory-efficient Weakly Supervised Object Detection
paper: https://arxiv.org/abs/2004.04725
code: https://github.com/NVlabs/wetectron
[18] Rethinking Classification and Localization for Object Detection
paper: https://arxiv.org/abs/1904.06493
code: TBD
[19] Dynamic Refinement Network for Oriented and Densely Packed Object Detection
paper: https://arxiv.org/abs/2005.09973
code: https://github.com/Anymake/DRN_CVPR2020