- 目标检测:从基础原理到前沿技术全面解析
随机森林404
计算机视觉目标检测人工智能计算机视觉
引言在计算机视觉领域,目标检测是一项核心且极具挑战性的任务,它不仅要识别图像中有什么物体,还要确定这些物体在图像中的具体位置。随着人工智能技术的快速发展,目标检测已成为智能监控、自动驾驶、医疗影像分析等众多应用的基础技术。本文将全面介绍目标检测的基础概念、发展历程、关键技术、实践应用以及未来趋势,为读者提供系统性的知识框架。第一章目标检测概述1.1目标检测的定义与重要性目标检测(ObjectDet
- 喜讯 | Navicat 蝉联 2025 年 DBTA 100 强名单
Navicat中国
Navicat17焕新上市navicat数据库
Navicat在“DBTA1002025-数据领域最重要的公司”榜单中获得表彰。该奖项旨在表彰在数据管理与分析领域的领先创新者。数据库趋势与应用集团出版人TomHogan表示:“企业正寻求扩大人工智能的应用范围,采用新的技术与应用,增加数据分析/商业智能的使用,并对现有应用进行现代化改造”,“每年,《数据库趋势与应用》杂志都会推出DBTA100榜单,旨在表彰具有创新精神、能够为客户带来新产品新体验
- Midjourney:AI人工智能图像生成的新方向
AI智能探索者
人工智能midjourney计算机视觉ai
Midjourney:AI人工智能图像生成的新方向关键词:Midjourney、AI图像生成、扩散模型、提示词工程、多模态学习、生成式AI、创意工具摘要:本文将带您走进AI图像生成的前沿领域,以Midjourney为核心,从技术原理到实际应用,用通俗易懂的语言解析其背后的“魔法”。我们将通过生活案例、技术拆解和实战演示,揭示Midjourney如何通过扩散模型、提示词工程和多模态学习,重新定义“用
- AI原生应用必知:5大高效多轮对话框架对比
AI原生应用开发
AI-nativeeasyui前端ai
AI原生应用必知:5大高效多轮对话框架对比关键词:AI原生应用、多轮对话、对话框架、自然语言处理、上下文管理、意图识别、对话状态跟踪摘要:本文深入探讨了构建AI原生应用时必备的5大多轮对话框架,包括Rasa、Dialogflow、MicrosoftBotFramework、AmazonLex和IBMWatsonAssistant。通过对比分析它们的架构设计、核心功能和应用场景,帮助开发者选择最适合
- 剖析AI人工智能领域Whisper的性能指标
AI大模型应用实战
人工智能whisperxcodeai
剖析AI人工智能领域Whisper的性能指标关键词:Whisper、语音识别、性能指标、ASR、AI模型评估、基准测试、语音转文本摘要:本文深入剖析OpenAI开发的Whisper语音识别系统的性能指标。我们将从技术原理、架构设计、性能基准测试等多个维度,全面分析Whisper在不同场景下的表现。文章将详细讲解Whisper的评估方法、关键性能指标解读、实际应用中的性能表现,以及与其他主流语音识别
- 探索AI人工智能领域多智能体系统的技术原理
AI大模型应用之禅
人工智能网络ai
探索AI人工智能领域多智能体系统的技术原理关键词:AI人工智能、多智能体系统、技术原理、智能体交互、分布式计算摘要:本文深入探索了AI人工智能领域多智能体系统的技术原理。首先介绍了多智能体系统的背景,包括其目的、预期读者、文档结构和相关术语。接着阐述了多智能体系统的核心概念与联系,通过文本示意图和Mermaid流程图进行清晰展示。详细讲解了核心算法原理,结合Python源代码进行说明,并给出了相关
- 结合创新idea:机器学习+运筹优化=CCF高端局
Ai多利
机器学习人工智能
2024深度学习发论文&模型涨点之——机器学习+运筹优化机器学习是人工智能的一个分支,它使计算机系统能够从数据中学习并改进其性能,而无需进行明确的编程。运筹优化,也称为运筹学或运营管理,是应用数学的一个分支,它使用数学模型和算法来支持复杂决策过程的制定。机器学习与运筹优化的结合是一个前沿且活跃的研究领域,它们相互补充,为解决复杂问题提供了新的思路和方法。小编整理了一些机器学习+运筹优化【论文+代码
- 【GitHub开源项目实战】Agent-Zero 多模态 Agent 框架的架构实现与实战落地
观熵
GitHub开源项目实战github开源架构
开源项目实战解析:Agent-Zero多模态Agent框架的架构实现与实战落地关键词:Agent-Zero、LLMAgent、多模态融合、LangGraph、结构化对话、函数调用、RAG、真实场景实战、开源项目分析摘要:Agent-Zero是一个以LangGraph为核心构建的多模态智能体框架,专注于大语言模型(LLMs)驱动下的多模态Agent系统实现,具备高度模块化、支持结构化对话状态流转、工
- 【LangChain编程:从入门到实践】LangChain与其他框架的比较
AI天才研究院
AgenticAI实战计算AI人工智能与大数据计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
【LangChain编程:从入门到实践】LangChain与其他框架的比较1.背景介绍1.1人工智能发展现状在当今时代,人工智能(AI)已经成为科技领域中最热门和最具革命性的话题之一。随着计算能力的不断提升和算法的持续优化,AI系统正在不断扩展其应用范围,包括自然语言处理、计算机视觉、决策系统等各个领域。1.2LangChain概述在这种背景下,LangChain作为一个新兴的AI框架应运而生。L
- 重塑知识的圣殿:人工智能时代的教育革命与人文守护
田园Coder
人工智能科普人工智能科普
教育,承载着文明火种传递的千年使命,其核心始终围绕两个永恒命题:如何让知识更有效地被获取?如何让个体潜能更充分地绽放?在信息爆炸、技能迭代加速的当代,传统教育模式——标准化课程、统一进度、有限师资、资源不均——正面临前所未有的压力。人工智能(AI)的崛起,如同一股强大的变革洪流,正以前所未有的深度和广度渗透教育生态的各个环节。从量身定制的学习路径到永不疲倦的智能导师,从虚拟现实的沉浸课堂到洞察学情
- 踏入真实:具身智能与物理世界的认知交响
当大型语言模型在文本的海洋中纵横捭阖,生成式AI在数字画布上挥洒创意时,人工智能仍有一个根本性的疆域尚未完全征服——真实的三维物理世界。理解一个苹果,不能仅靠词向量坐标;学会行走,无法通过阅读说明书达成;在拥挤的街道导航,远非处理符号逻辑那般简单。智能的进化,自生命诞生之初,便与具身性(Embodiment)和环境交互(Interaction)密不可分。我们的认知、学习、乃至意识的雏形,都源于身体
- Nystromformer:一种基于 Nyström 方法的自注意力近似算法
AI专题精讲
Paper阅读人工智能自然语言处理AI
1.摘要Transformer已经成为广泛自然语言处理任务中的强大工具。推动Transformer展现出卓越性能的一个关键组件是self-attention机制,它对每个token编码了其他token的影响或依赖关系。虽然self-attention机制具有诸多优势,但其在输入序列长度上的二次复杂度限制了其在较长序列上的应用——这是当前社区积极研究的一个主题。为了解决这一限制,我们提出了Nystr
- 使用 C++/OpenCV 和 MFCC 构建双重认证智能门禁系统
使用C++/OpenCV和MFCC构建双重认证智能门禁系统引言随着物联网和人工智能技术的发展,智能门禁系统在安防领域的应用越来越广泛。相比于传统的钥匙、门禁卡或密码,生物识别技术(如人脸识别、指纹识别、虹膜识别等)提供了更高的安全性与便利性。然而,单一的生物识别方式在某些场景下可能存在安全隐患。例如,人脸识别可能被高清照片或视频欺骗(称为“欺骗攻击”),在光照、姿态变化剧烈时识别率也可能下降。为了
- SurveyForge:AI自动撰写综述论文的革命性工具,助力科研效率跃升
花生糖@
AIGC学习资料库人工智能AI论文AI助手
在学术研究领域,综述论文(SurveyPaper)的撰写是一项耗时且复杂的任务,通常需要数周甚至数月的文献调研与内容整合。如今,上海人工智能实验室、复旦大学与上海交通大学联合开源的SurveyForge,通过创新的AI技术,将这一过程压缩至10分钟内,且生成质量接近人工水平,成为科研人员的得力助手。项目简介SurveyForge是一款基于大语言模型(LLM)的自动综述论文生成工具,专为计算机科学领
- 供应链风险管理:AI预测潜在风险
AI智能应用
AI大模型应用入门实战与进阶javapythonjavascriptkotlingolang架构人工智能
供应链风险管理,AI预测,机器学习,深度学习,自然语言处理,风险评估,供应链可视化1.背景介绍在当今全球化经济体系中,供应链的复杂性和脆弱性日益凸显。供应链风险是指任何可能对供应链正常运行造成负面影响的事件或因素。这些风险可能来自自然灾害、政治动荡、经济波动、技术故障、供应商违约等方面。一旦供应链风险爆发,可能会导致生产中断、产品短缺、成本飙升、品牌形象受损等严重后果。传统供应链风险管理方法主要依
- 供应链风险管理:AI如何预测供应链风险
AI大模型应用之禅
javapythonjavascriptkotlingolang架构人工智能
供应链风险管理,AI预测,机器学习,深度学习,自然语言处理,时间序列分析,风险评估1.背景介绍在当今全球化经济体系中,供应链风险已成为企业面临的重大挑战。供应链的复杂性和不可预测性使得企业更容易受到各种风险的影响,例如自然灾害、政治动荡、经济波动、疫情爆发等。这些风险可能导致供应中断、成本增加、交付延迟,甚至损害企业声誉。传统供应链风险管理方法主要依赖于经验和专家判断,缺乏数据驱动和预测能力。随着
- 【AI】大语言模型(LLM)& NLP
G皮T
#大语言模型LLMNLP大模型大语言模型AI人工智能
大语言模型(LLM)&NLP1.大语言模型(LLM)1.1一句话解释1.2更形象的比喻1.3为什么叫“大”模型1.4它能做什么1.5现实中的例子2.对比NLP2.1用“汽车进化”比喻NLP→LLM2.2为什么说LLM属于NLP2.3LLM的“革命性突破”在哪里2.4总结1.大语言模型(LLM)1.1一句话解释大语言模型(LargeLanguageModel,LLM)是一个“超级文字预测器”,它通过
- 大模型的MoE架构解析:从理论到应用的系统探讨
不秃头de程序猿
开发语言转行人工智能ai大模型程序员学习
MixtureofExperts(专家混合)架构正在重新定义大语言模型的发展轨迹。这种革命性的架构通过条件计算实现了万亿参数规模的模型,同时保持与千亿参数密集模型相当的计算成本。从GPT-4的1.8万亿参数到DeepSeek-V3的671亿参数,MoE架构已成为当前AI领域最重要的技术突破之一。MoE的核心洞察在于"不是所有的模型容量都需要同时激活"——通过让不同的专家网络处理不同类型的输入,实现
- 2024大模型秋招LLM相关面试题整理
AGI大模型资料分享官
人工智能深度学习机器学习自然语言处理语言模型easyui
0一些基础术语大模型:一般指1亿以上参数的模型,但是这个标准一直在升级,目前万亿参数以上的模型也有了。大语言模型(LargeLanguageModel,LLM)是针对语言的大模型。175B、60B、540B等:这些一般指参数的个数,B是Billion/十亿的意思,175B是1750亿参数,这是ChatGPT大约的参数规模。强化学习:(ReinforcementLearning)一种机器学习的方法,
- 使用Python爬虫与自然语言处理技术抓取并分析网页内容
Python爬虫项目
python爬虫自然语言处理javascript数据分析人工智能
1.引言在如今数据驱动的时代,网页爬虫(WebScraping)和自然语言处理(NLP)已成为处理大量网页数据的重要工具。利用Python爬虫抓取网页内容,结合NLP技术进行文本分析和信息抽取,能够从大量网页中提取有价值的信息。无论是新闻文章的情感分析、社交媒体的舆情分析,还是电商网站的商品评论挖掘,这些技术都发挥着至关重要的作用。本文将介绍如何利用Python爬虫与自然语言处理技术抓取并分析网页
- 面向高校的人工智能通识教育课程实验设计方案
武汉唯众智创
人工智能人工智能通识教育课程实验人工智能通识教育人工智能通识课程人工智能通识
一、前言2018年,教育部发布《高等学校人工智能创新行动计划》,明确提出“重视人工智能与计算机、控制、数学、统计学、物理学、生物学、心理学、社会学、法学等学科专业教育的交叉融合,探索‘人工智能+X’的人才培养模式”。过去,人工智能教育多集中于研究生阶段,本科生接触机会相对有限。2019年,教育部批准35所高校增设“人工智能”本科专业,这标志着人工智能正式纳入本科教育体系。如今,人工智能课程大多是计
- SpringBoot电商项目实战:从零搭建百万级架构
博主介绍:Java、Python、js全栈开发“多面手”,精通多种编程语言和技术,痴迷于人工智能领域。秉持着对技术的热爱与执着,持续探索创新,愿在此分享交流和学习,与大家共进步。DeepSeek-行业融合之万象视界(附实战案例详解100+)全栈开发环境搭建运行攻略:多语言一站式指南(环境搭建+运行+调试+发布+保姆级详解)感兴趣的可以先收藏起来,希望帮助更多的人SpringBoot电商项目实战:从
- GPT在AI原生应用领域的无限潜力
GPT在AI原生应用领域的无限潜力关键词:GPT、AI原生应用、自然语言处理、无限潜力、应用场景摘要:本文深入探讨了GPT在AI原生应用领域所展现出的无限潜力。首先介绍了相关背景知识,包括GPT的基本概念和AI原生应用的定义。接着详细解释了GPT的核心概念,以及它与AI原生应用的紧密联系。通过数学模型和公式对GPT的工作原理进行了阐述,并给出了实际的代码案例。还探讨了GPT在多个实际应用场景中的表
- 人工智能赋能气象气候:从数据智能到预测创新的融合之路
慌ZHANG
人工智能人工智能
个人主页:慌ZHANG-CSDN博客期待您的关注一、引言:气象气候与AI的“天然耦合”气象与气候系统是典型的复杂、多尺度、强非线性的自然系统,其建模、分析与预测依赖庞大观测数据和高性能计算资源。传统方法以数值天气预报(NWP)与物理建模为核心,虽然取得重要成就,但也面临计算代价大、精度不足、长期预测偏差大等瓶颈。与此同时,人工智能(AI),尤其是以深度学习为代表的机器学习方法,近年来在图像识别、自
- python模拟内置函数reversed_Python内置函数reversed
weixin_39594895
{"moduleinfo":{"card_count":[{"count_phone":1,"count":1}],"search_count":[{"count_phone":4,"count":4}]},"card":[{"des":"阿里技术人对外发布原创技术内容的最大平台;社区覆盖了云计算、大数据、人工智能、IoT、云原生、数据库、微服务、安全、开发与运维9大技术领域。","link1":
- 面向智能医疗的6G物联网和人工智能
Allen_Lyb
医疗高效编程研发物联网人工智能健康医疗
AbstractTheconvergenceof6Gwirelesstechnology,theInternetofThings(IoT),andArtificialIntelligence(AI)ispoisedtorevolutionizehealthcaredeliverybyenablingunprecedentedlevelsofconnectivity,intelligence,and
- 深度学习前置知识全面解析:从机器学习到深度学习的进阶之路
一、引言:人工智能时代的核心技术在当今这个数据爆炸的时代,人工智能(AI)已经成为推动社会进步的核心技术之一。作为AI领域最重要的分支,深度学习(DeepLearning)在计算机视觉、自然语言处理、语音识别等领域取得了突破性进展,彻底改变了我们与机器交互的方式。本教案将从机器学习的基础知识出发,系统性地介绍深度学习的核心概念、数学基础、网络架构和训练方法,为读者构建完整的知识体系框架。无论你是刚
- 从文档海洋到智能问答:用大模型和RAG打造下一代企业知识库的实战之路
电脑能手
人工智能算法语言模型深度学习python
从文档海洋到智能问答:用大模型和RAG打造下一代企业知识库的实战之路摘要:在信息爆炸的今天,企业内部文档(如SOP、技术手册、FAQ)数量激增,传统的关键词搜索常常让我们在“文档海洋”中迷失。本文将分享一次从0到1的实战探索,讲述如何利用大语言模型(LLM)和检索增强生成(RAG)技术,将静态、孤立的知识库,重塑为一个能“思考”和“对话”的智能问答系统。我们将从理念澄清、技术选型、代码实战到未来展
- AI 加持下的智能家居行业:变革、挑战与机遇
低代码老李
人工智能智能家居
在当今科技迅猛发展的浪潮中,人工智能(AI)已深深融入智能家居领域,成为推动其蓬勃发展的关键力量,为人们的生活带来了诸多便利和创新体验,同时也面临着一系列亟待解决的问题。一、AI驱动的智能家居功能升级(1)智能语音交互与控制智能语音助手作为智能家居的核心交互方式,借助自然语言处理(NLP)技术,让用户仅通过简单的语音指令,就能轻松操控家中各类智能设备,如精准控制灯光的开关与亮度调节、窗帘的开合、电
- 提示技术系列(六)——链式提示
AIGC包拥它
提示技术人工智能promptpythonlangchain
什么是提示技术?提示技术是实现提示工程目标的具体技术手段,是提示工程中的“工具库”。什么又是提示工程?提示工程是指通过设计、优化和迭代输入到大语言模型(LLM)的提示(Prompt),系统性提升模型输出质量(如相关性、准确性、可控性)的实践领域。它是一个覆盖全流程的方法论,包括:明确目标任务(如生成教学内容、问答、翻译);设计提示结构(如指令、上下文、示例);选择模型与参数(如温度、top_p);
- ios内付费
374016526
ios内付费
近年来写了很多IOS的程序,内付费也用到不少,使用IOS的内付费实现起来比较麻烦,这里我写了一个简单的内付费包,希望对大家有帮助。
具体使用如下:
这里的sender其实就是调用者,这里主要是为了回调使用。
[KuroStoreApi kuroStoreProductId:@"产品ID" storeSender:self storeFinishCallBa
- 20 款优秀的 Linux 终端仿真器
brotherlamp
linuxlinux视频linux资料linux自学linux教程
终端仿真器是一款用其它显示架构重现可视终端的计算机程序。换句话说就是终端仿真器能使哑终端看似像一台连接上了服务器的客户机。终端仿真器允许最终用户用文本用户界面和命令行来访问控制台和应用程序。(LCTT 译注:终端仿真器原意指对大型机-哑终端方式的模拟,不过在当今的 Linux 环境中,常指通过远程或本地方式连接的伪终端,俗称“终端”。)
你能从开源世界中找到大量的终端仿真器,它们
- Solr Deep Paging(solr 深分页)
eksliang
solr深分页solr分页性能问题
转载请出自出处:http://eksliang.iteye.com/blog/2148370
作者:eksliang(ickes) blg:http://eksliang.iteye.com/ 概述
长期以来,我们一直有一个深分页问题。如果直接跳到很靠后的页数,查询速度会比较慢。这是因为Solr的需要为查询从开始遍历所有数据。直到Solr的4.7这个问题一直没有一个很好的解决方案。直到solr
- 数据库面试题
18289753290
面试题 数据库
1.union ,union all
网络搜索出的最佳答案:
union和union all的区别是,union会自动压缩多个结果集合中的重复结果,而union all则将所有的结果全部显示出来,不管是不是重复。
Union:对两个结果集进行并集操作,不包括重复行,同时进行默认规则的排序;
Union All:对两个结果集进行并集操作,包括重复行,不进行排序;
2.索引有哪些分类?作用是
- Android TV屏幕适配
酷的飞上天空
android
先说下现在市面上TV分辨率的大概情况
两种分辨率为主
1.720标清,分辨率为1280x720.
屏幕尺寸以32寸为主,部分电视为42寸
2.1080p全高清,分辨率为1920x1080
屏幕尺寸以42寸为主,此分辨率电视屏幕从32寸到50寸都有
适配遇到问题,已1080p尺寸为例:
分辨率固定不变,屏幕尺寸变化较大。
如:效果图尺寸为1920x1080,如果使用d
- Timer定时器与ActionListener联合应用
永夜-极光
java
功能:在控制台每秒输出一次
代码:
package Main;
import javax.swing.Timer;
import java.awt.event.*;
public class T {
private static int count = 0;
public static void main(String[] args){
- Ubuntu14.04系统Tab键不能自动补全问题解决
随便小屋
Ubuntu 14.04
Unbuntu 14.4安装之后就在终端中使用Tab键不能自动补全,解决办法如下:
1、利用vi编辑器打开/etc/bash.bashrc文件(需要root权限)
sudo vi /etc/bash.bashrc
接下来会提示输入密码
2、找到文件中的下列代码
#enable bash completion in interactive shells
#if
- 学会人际关系三招 轻松走职场
aijuans
职场
要想成功,仅有专业能力是不够的,处理好与老板、同事及下属的人际关系也是门大学问。如何才能在职场如鱼得水、游刃有余呢?在此,教您简单实用的三个窍门。
第一,多汇报
最近,管理学又提出了一个新名词“追随力”。它告诉我们,做下属最关键的就是要多请示汇报,让上司随时了解你的工作进度,有了新想法也要及时建议。不知不觉,你就有了“追随力”,上司会越来越了解和信任你。
第二,勤沟通
团队的力
- 《O2O:移动互联网时代的商业革命》读书笔记
aoyouzi
读书笔记
移动互联网的未来:碎片化内容+碎片化渠道=各式精准、互动的新型社会化营销。
O2O:Online to OffLine 线上线下活动
O2O就是在移动互联网时代,生活消费领域通过线上和线下互动的一种新型商业模式。
手机二维码本质:O2O商务行为从线下现实世界到线上虚拟世界的入口。
线上虚拟世界创造的本意是打破信息鸿沟,让不同地域、不同需求的人
- js实现图片随鼠标滚动的效果
百合不是茶
JavaScript滚动属性的获取图片滚动属性获取页面加载
1,获取样式属性值
top 与顶部的距离
left 与左边的距离
right 与右边的距离
bottom 与下边的距离
zIndex 层叠层次
例子:获取左边的宽度,当css写在body标签中时
<div id="adver" style="position:absolute;top:50px;left:1000p
- ajax同步异步参数async
bijian1013
jqueryAjaxasync
开发项目开发过程中,需要将ajax的返回值赋到全局变量中,然后在该页面其他地方引用,因为ajax异步的原因一直无法成功,需将async:false,使其变成同步的。
格式:
$.ajax({ type: 'POST', ur
- Webx3框架(1)
Bill_chen
eclipsespringmaven框架ibatis
Webx是淘宝开发的一套Web开发框架,Webx3是其第三个升级版本;采用Eclipse的开发环境,现在支持java开发;
采用turbine原型的MVC框架,扩展了Spring容器,利用Maven进行项目的构建管理,灵活的ibatis持久层支持,总的来说,还是一套很不错的Web框架。
Webx3遵循turbine风格,velocity的模板被分为layout/screen/control三部
- 【MongoDB学习笔记五】MongoDB概述
bit1129
mongodb
MongoDB是面向文档的NoSQL数据库,尽量业界还对MongoDB存在一些质疑的声音,比如性能尤其是查询性能、数据一致性的支持没有想象的那么好,但是MongoDB用户群确实已经够多。MongoDB的亮点不在于它的性能,而是它处理非结构化数据的能力以及内置对分布式的支持(复制、分片达到的高可用、高可伸缩),同时它提供的近似于SQL的查询能力,也是在做NoSQL技术选型时,考虑的一个重要因素。Mo
- spring/hibernate/struts2常见异常总结
白糖_
Hibernate
Spring
①ClassNotFoundException: org.aspectj.weaver.reflect.ReflectionWorld$ReflectionWorldException
缺少aspectjweaver.jar,该jar包常用于spring aop中
②java.lang.ClassNotFoundException: org.sprin
- jquery easyui表单重置(reset)扩展思路
bozch
formjquery easyuireset
在jquery easyui表单中 尚未提供表单重置的功能,这就需要自己对其进行扩展。
扩展的时候要考虑的控件有:
combo,combobox,combogrid,combotree,datebox,datetimebox
需要对其添加reset方法,reset方法就是把初始化的值赋值给当前的组件,这就需要在组件的初始化时将值保存下来。
在所有的reset方法添加完毕之后,就需要对fo
- 编程之美-烙饼排序
bylijinnan
编程之美
package beautyOfCoding;
import java.util.Arrays;
/*
*《编程之美》的思路是:搜索+剪枝。有点像是写下棋程序:当前情况下,把所有可能的下一步都做一遍;在这每一遍操作里面,计算出如果按这一步走的话,能不能赢(得出最优结果)。
*《编程之美》上代码有很多错误,且每个变量的含义令人费解。因此我按我的理解写了以下代码:
*/
- Struts1.X 源码分析之ActionForm赋值原理
chenbowen00
struts
struts1在处理请求参数之前,首先会根据配置文件action节点的name属性创建对应的ActionForm。如果配置了name属性,却找不到对应的ActionForm类也不会报错,只是不会处理本次请求的请求参数。
如果找到了对应的ActionForm类,则先判断是否已经存在ActionForm的实例,如果不存在则创建实例,并将其存放在对应的作用域中。作用域由配置文件action节点的s
- [空天防御与经济]在获得充足的外部资源之前,太空投资需有限度
comsci
资源
这里有一个常识性的问题:
地球的资源,人类的资金是有限的,而太空是无限的.....
就算全人类联合起来,要在太空中修建大型空间站,也不一定能够成功,因为资源和资金,技术有客观的限制....
&
- ORACLE临时表—ON COMMIT PRESERVE ROWS
daizj
oracle临时表
ORACLE临时表 转
临时表:像普通表一样,有结构,但是对数据的管理上不一样,临时表存储事务或会话的中间结果集,临时表中保存的数据只对当前
会话可见,所有会话都看不到其他会话的数据,即使其他会话提交了,也看不到。临时表不存在并发行为,因为他们对于当前会话都是独立的。
创建临时表时,ORACLE只创建了表的结构(在数据字典中定义),并没有初始化内存空间,当某一会话使用临时表时,ORALCE会
- 基于Nginx XSendfile+SpringMVC进行文件下载
denger
应用服务器Webnginx网络应用lighttpd
在平常我们实现文件下载通常是通过普通 read-write方式,如下代码所示。
@RequestMapping("/courseware/{id}")
public void download(@PathVariable("id") String courseID, HttpServletResp
- scanf接受char类型的字符
dcj3sjt126com
c
/*
2013年3月11日22:35:54
目的:学习char只接受一个字符
*/
# include <stdio.h>
int main(void)
{
int i;
char ch;
scanf("%d", &i);
printf("i = %d\n", i);
scanf("%
- 学编程的价值
dcj3sjt126com
编程
发一个人会编程, 想想以后可以教儿女, 是多么美好的事啊, 不管儿女将来从事什么样的职业, 教一教, 对他思维的开拓大有帮助
像这位朋友学习:
http://blog.sina.com.cn/s/articlelist_2584320772_0_1.html
VirtualGS教程 (By @林泰前): 几十年的老程序员,资深的
- 二维数组(矩阵)对角线输出
飞天奔月
二维数组
今天在BBS里面看到这样的面试题目,
1,二维数组(N*N),沿对角线方向,从右上角打印到左下角如N=4: 4*4二维数组
{ 1 2 3 4 }
{ 5 6 7 8 }
{ 9 10 11 12 }
{13 14 15 16 }
打印顺序
4
3 8
2 7 12
1 6 11 16
5 10 15
9 14
13
要
- Ehcache(08)——可阻塞的Cache——BlockingCache
234390216
并发ehcacheBlockingCache阻塞
可阻塞的Cache—BlockingCache
在上一节我们提到了显示使用Ehcache锁的问题,其实我们还可以隐式的来使用Ehcache的锁,那就是通过BlockingCache。BlockingCache是Ehcache的一个封装类,可以让我们对Ehcache进行并发操作。其内部的锁机制是使用的net.
- mysqldiff对数据库间进行差异比较
jackyrong
mysqld
mysqldiff该工具是官方mysql-utilities工具集的一个脚本,可以用来对比不同数据库之间的表结构,或者同个数据库间的表结构
如果在windows下,直接下载mysql-utilities安装就可以了,然后运行后,会跑到命令行下:
1) 基本用法
mysqldiff --server1=admin:12345
- spring data jpa 方法中可用的关键字
lawrence.li
javaspring
spring data jpa 支持以方法名进行查询/删除/统计。
查询的关键字为find
删除的关键字为delete/remove (>=1.7.x)
统计的关键字为count (>=1.7.x)
修改需要使用@Modifying注解
@Modifying
@Query("update User u set u.firstna
- Spring的ModelAndView类
nicegege
spring
项目中controller的方法跳转的到ModelAndView类,一直很好奇spring怎么实现的?
/*
* Copyright 2002-2010 the original author or authors.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* yo
- 搭建 CentOS 6 服务器(13) - rsync、Amanda
rensanning
centos
(一)rsync
Server端
# yum install rsync
# vi /etc/xinetd.d/rsync
service rsync
{
disable = no
flags = IPv6
socket_type = stream
wait
- Learn Nodejs 02
toknowme
nodejs
(1)npm是什么
npm is the package manager for node
官方网站:https://www.npmjs.com/
npm上有很多优秀的nodejs包,来解决常见的一些问题,比如用node-mysql,就可以方便通过nodejs链接到mysql,进行数据库的操作
在开发过程往往会需要用到其他的包,使用npm就可以下载这些包来供程序调用
&nb
- Spring MVC 拦截器
xp9802
spring mvc
Controller层的拦截器继承于HandlerInterceptorAdapter
HandlerInterceptorAdapter.java 1 public abstract class HandlerInterceptorAdapter implements HandlerIntercep