python 协程详解及I/O多路复用,I/O异步

上文介绍了python网络编程的进程线程,多线程,多进程相关,接下来介绍协程

Python由于众所周知的GIL的原因,导致其线程无法发挥多核的并行计算能力(当然,后来有了multiprocessing,可以实现多进程并行)。既然在GIL之下,同一时刻只能有一个线程在运行,那么对于CPU密集的程序来说,线程之间的切换开销就成了拖累,而以I/O为瓶颈的程序正是协程所擅长的:

多任务并发(非并行),每个任务在合适的时候挂起(发起I/O)和恢复(I/O结束)

Python中的协程经历了很长的一段发展历程。其大概经历了如下三个阶段:

  1. 最初的生成器变形yield/send
  2. 引入@asyncio.coroutine和yield from
  3. 在最近的Python3.5版本中引入async/await关键字

1,协程是什么

协程,又称微线程,纤程。英文名Coroutine,是一种用户态的轻量级线程

协程拥有自己的寄存器上下文和栈。协程调度切换时,将寄存器上下文和栈保存到其他地方(线程调度时候寄存器上下文及栈等保存在内存中),在切回来的时候,恢复先前保存的寄存器上下文和栈。因此:

协程能保留上一次调用时的状态(即所有局部状态的一个特定组合),每次过程重入时,就相当于进入上一次调用的状态,换种说法:进入上一次离开时所处逻辑流的位置。

子程序,或者称为函数,在所有语言中都是层级调用,比如A调用B,B在执行过程中又调用了C,C执行完毕返回,B执行完毕返回,最后是A执行完毕。

所以子程序调用是通过栈实现的,一个线程就是执行一个子程序。

子程序调用总是一个入口,一次返回,调用顺序是明确的。而协程的调用和子程序不同。

协程看上去也是子程序,但执行过程中,在子程序内部可中断,然后转而执行别的子程序,在适当的时候再返回来接着执行。

注意,在一个子程序中中断,去执行其他子程序,不是函数调用,有点类似CPU的中断。比如子程序A、B:

def A():
    print '1'
    print '2'
    print '3'

def B():
    print 'x'
    print 'y'
    print 'z'

假设由协程执行,在执行A的过程中,可以随时中断,去执行B,B也可能在执行过程中中断再去执行A,结果可能是:

1
2
x
y
3
z

但是在A中是没有调用B的,所以协程的调用比函数调用理解起来要难一些。

看起来A、B的执行有点像多线程,但协程的特点在于是一个线程执行。

2、协程的优点缺点:

  • 无需线程上下文切换的开销
  • 无需原子操作锁定及同步的开销
    • "原子操作(atomic operation)是不需要synchronized",所谓原子操作是指不会被线程调度机制打断的操作;这种操作一旦开始,就一直运行到结束,中间不会有任何 context switch (切换到另一个线程)。原子操作可以是一个步骤,也可以是多个操作步骤,但是其顺序是不可以被打乱,或者切割掉只执行部分。视作整体是原子性的核心。
  • 方便切换控制流,简化编程模型
  • 高并发+高扩展性+低成本:一个CPU支持上万的协程都不是问题。所以很适合用于高并发处理。如Nginxhttps://blog.csdn.net/shootyou/article/details/6093562

缺点:

  • 无法利用多核资源:协程的本质是个单线程,它不能同时将 单个CPU 的多个核用上,协程需要和进程配合才能运行在多CPU上.最简单的方法是多进程+协程,既充分利用多核,又充分发挥协程的高效率,可获得极高的性能。当然我们日常所编写的绝大部分应用都没有这个必要,除非是cpu密集型应用。
  • 进行阻塞(Blocking)操作(如IO时)会阻塞掉整个程序

3、从yield说起

在介绍容器生成器时候,我们提到了yeild,例如计算斐波那契续列的代码:

def old_fib(n):
	res = [0] * n
	index = 0
	a = 0
	b = 1
	while index < n:
		res[index] = b
		a, b = b, a + b
		index += 1
	return res
 
print('-'*10 + 'test old fib' + '-'*10)
for fib_res in old_fib(20):
	print(fib_res)

如果我们仅仅是需要拿到斐波那契序列的第n位,或者仅仅是希望依此产生斐波那契序列,那么上面这种传统方式就会比较耗费内存。这时,yield就派上用场了。

当一个函数中包含yield语句时,python会自动将其识别为一个生成器。这时fib(20)并不会真正调用函数体,而是以函数体生成了一个生成器对象实例。

yield在这里可以保留fib函数的计算现场,暂停fib的计算并将b返回。而将fib放入for…in循环中时,每次循环都会调用next(fib(20)),唤醒生成器,执行到下一个yield语句处,直到抛出StopIteration异常。此异常会被for循环捕获,导致跳出循环。

3.1、生成器的Send方法

从上面的程序中可以看到,目前只有数据从fib(20)中通过yield流向外面的for循环;如果可以向fib(20)发送数据,那不是就可以在Python中实现协程了嘛。于是,Python中的生成器有了send函数,yield表达式也拥有了返回值。

我们用这个特性,模拟一个额慢速斐波那契数列的计算:

def stupid_fib(n):
	index = 0
	a = 0
	b = 1
	while index < n:
		sleep_cnt = yield b
		print('let me think {0} secs'.format(sleep_cnt))
		time.sleep(sleep_cnt)
		a, b = b, a + b
		index += 1
print('-'*10 + 'test yield send' + '-'*10)
N = 20
sfib = stupid_fib(N)
fib_res = next(sfib)
while True:
	print(fib_res)
	try:
		fib_res = sfib.send(random.uniform(0, 0.5))
	except StopIteration:
		break

其中next(sfib)相当于sfib.send(None),可以使得sfib运行至第一个yield处返回。后续的sfib.send(random.uniform(0, 0.5))则将一个随机的秒数发送给sfib,作为当前中断的yield表达式的返回值。这样,我们可以从“主”程序中控制协程计算斐波那契数列时的思考时间,协程可以返回给“主”程序计算结果,Perfect!

4、使用yield实现协程模拟生产者消费者模式 

传统的生产者-消费者模型是一个线程写消息,一个线程取消息,通过锁机制控制队列和等待,但一不小心就可能死锁。

如果改用协程,生产者生产消息后,直接通过yield跳转到消费者开始执行,待消费者执行完毕后,切换回生产者继续生产,效率极高:

import time
import queue

def consumer(name):
    print("--->starting eating baozi...")
    while True:
        new_baozi = yield
        print("[%s] is eating baozi %s" % (name, new_baozi))

def producer():
    r = con.__next__()
    r = con2.__next__()
    n = 0
    while n < 5:
        n += 1
        con.send(n)
        con2.send(n)
        time.sleep(1)
        print("\033[32;1m[producer]\033[0m is making baozi %s" % n)

if __name__ == '__main__':
    con = consumer("c1")
    con2 = consumer("c2")
    p = producer()

注意到consumer函数是一个generator(生成器),把一个consumer传入produce后:

  1. 首先调用con.__next__()启动生成器;

  2. 然后,一旦生产了东西,通过con.send(n)切换到consumer执行;

  3. consumer通过yield拿到消息,处理,又通过yield把结果传回;

  4. produce拿到consumer处理的结果,继续生产下一条消息;

  5. produce决定不生产了,通过c.close()关闭consumer,整个过程结束。

整个流程无锁,由一个线程执行,produce和consumer协作完成任务,所以称为“协程”,而非线程的抢占式多任务。

最后套用Donald Knuth的一句话总结协程的特点:“子程序就是协程的一种特例。”

我们先给协程一个标准定义,即符合什么条件就能称之为协程:

  1. 必须在只有一个单线程里实现并发
  2. 修改共享数据不需加锁
  3. 用户程序里自己保存多个控制流的上下文栈
  4. 一个协程遇到IO操作自动切换到其它协程

基于上面这4点定义,我们刚才用yield实现的程并不能算是合格的线程,不满足最后一条。

 如何实现单线程下并发效果:遇到IO操作就切换,协程之所以能处理大并发,就是由于挤掉了IO操作,使得CPU一直运行。

关键在于切换出来后,什么时候再切换回去??需要程序自动监测IO操作,IO操作结束就切换回去

以上我们是通过yeild实现的协程的功能,yield能实现协程,不过实现过程不易于理解,greenlet是在这方面做了改进。接下来介绍python封装好的协程Greenlet,

5、使用GreenLet

Greenlet是python的一个C扩展,来源于Stackless python,旨在提供可自行调度的‘微线程’, 即协程。generator实现的协程在yield value时只能将value返回给调用者(caller)。 而在greenlet中,target.switch(value)可以切换到指定的协程(target), 然后yield value。greenlet用switch来表示协程的切换,从一个协程切换到另一个协程需要显式指定。是一种手动切换,后面会介绍能实现自动切换的Gevent

5.1、安装greenlet

有的python自带了greenlet,可以直接  from greenlet import greenlet  导入,如果导入报错显示ModuleNotFoundError: No module named 'greenlet',那么需要自己安装一下,pip install greenlet,我这里用pycharm安装很简单Pycharm-->Preferences

python 协程详解及I/O多路复用,I/O异步_第1张图片python 协程详解及I/O多路复用,I/O异步_第2张图片

5.2、greenlet实例

安装好了之后我们来看一个官方的例子:

当创建一个greenlet时,首先初始化一个空的栈, switch到这个栈的时候,会运行在greenlet构造时传入的函数(首先在test1中打印 12), 如果在这个函数(test1)中switch到其他协程(到了test2 打印56),那么该协程会被挂起,等到切换回来(在test2中切换回来 打印34)。当这个协程对应函数执行完毕,那么这个协程就变成dead状态。

  注意 下面代码打印test2的最后一行输出 78,因为在test1中又切换到gr2,否则若没有test1中最后这次切换,那么test2切换之后挂起,不从test1再切换回来。这个可能造成泄漏,后面细说。

from greenlet import greenlet
def test1():
    print(12)
    gr2.switch()
    print(34)
    gr2.switch()
def test2():
    print(56)
    gr1.switch()
    print(78)

gr1 = greenlet(test1) #启动一个协程
gr2 = greenlet(test2)
gr1.switch() #手动切换

output:
12
56
34
78

 

 

6、Gevent

gevent是第三方库,可以轻松通过gevent实现并发同步或异步编程,在gevent中用到的主要模式是Greenlet, 它是以C扩展模块形式接入Python的轻量级协程。 Greenlet全部运行在主程序操作系统进程的内部,但它们被协作式地调度。其基本思想是:

当一个greenlet遇到IO操作时,比如访问网络,就自动切换到其他的greenlet,等到IO操作完成,再在适当的时候切换回来继续执行。由于IO操作非常耗时,经常使程序处于等待状态,有了gevent为我们自动切换协程,就保证总有greenlet在运行,而不是等待IO。

由于切换是在IO操作时自动完成,所以gevent需要修改Python自带的一些标准库,这一过程在启动时通过monkey patch完成:

6.1、安装gevent

如果没有安装gevent,需要先安装gevent,

  • pip3 install --upgrade pip3

  • pip3 install gevent

如果已经安装了,那么上面的greenlet也不需要安装了

6.2、gevent实例

#!/usr/bin/env python
# -*- coding: utf-8 -*-
import gevent
def foo():
    print('Running in foo') #1
    gevent.sleep(2) #2
    print('Explicit context switch to foo again') #3

def bar():
    print('Explicit context to bar') #4
    gevent.sleep(1) #5
    print('Implicit context switch back to bar') #6

gevent.joinall([
    gevent.spawn(foo),
    gevent.spawn(bar),
])


output:
Running in foo
Explicit context to bar
Implicit context switch back to bar
Explicit context switch to foo again

上面代码输出时候第三行会有一个一秒卡住,输出第三行后还会有个1秒卡住然后输出第四行结束

执行顺序是先执行#1,遇到IO操作切到#4,然后切回#2,切到#5......直到卡完1秒,执行#6,切到#2......卡住一秒后执行#3,结束程序。

6.3、遇到IO阻塞时会自动切换任务

Python的运行环境允许我们在运行时修改大部分的对象,包括模块、类甚至函数。虽然这样做会产生“隐式的副作用”,而且出现问题很难调试,但在需要修改Python本身的基础行为时,Monkey patching就派上用场了。Monkey patching能够使得gevent修改标准库里面大部分的阻塞式系统调用,包括socket,ssl,threading和select等模块,而变成协作式运行。

from urllib import request
import gevent,time
from gevent import monkey
monkey.patch_all() #把当前程序的所有的io操作给我单独的做上标记

def f(url):
    print('GET: %s' % url)
    resp = request.urlopen(url)
    data = resp.read()
    print('%d bytes received from %s.' % (len(data), url))
    page = open('url.html','wb')
    page.write(data)
    page.close()

urls = ['https://www.python.org/',
        'https://www.yahoo.com/',
        'https://github.com/' ]
time_start = time.time()
for url in urls:
    f(url)
print("同步cost",time.time() - time_start)
async_time_start = time.time()
gevent.joinall([
    gevent.spawn(f, 'https://www.python.org/'),
    gevent.spawn(f, 'https://www.yahoo.com/'),
    gevent.spawn(f, 'https://github.com/'),
])
print("异步cost",time.time() - async_time_start)

上面代码如果没有monkey.patch_all,是由于urllib与gevent无关,也就是gevent检测不到urllib的IO操作,也就不会切换,实际上会串行,导致二者耗时差不多,为了让gevent知道urllib的IO操作,可以给他打个补丁,这句代码的意义是给当前程序中所有有可能执行IO操作的前面加个标记,类似于gevent.sleep()的作用。

最终爬网页的速度:同步大概7秒多,异步2秒多。说明协程极大的提高了并发性能。

6.4、通过协程gevent实现单线程下的多socket并发

server端:

import sys,time,socket
import gevent
from gevent import socket, monkey
monkey.patch_all()
def server(port):
    s = socket.socket()
    s.bind(('0.0.0.0', port))
    s.listen(500)
    while True:
        cli, addr = s.accept()
        gevent.spawn(handle_request, cli)

def handle_request(conn):
    try:
        while True:
            data = conn.recv(1024)
            print("recv:", data)
            conn.send(data)
            if not data:
                conn.shutdown(socket.SHUT_WR)
    except Exception as  ex:
        print(ex)
    finally:
        conn.close()

if __name__ == '__main__':
    server(8001)

client端:

import socket
HOST = 'localhost'  # The remote host
PORT = 8001  # The same port as used by the server
s = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
s.connect((HOST, PORT))
while True:
    msg = bytes(input(">>:"), encoding="utf8")
    s.sendall(msg)
    data = s.recv(1024)
    #repr(data)#格式化输出
    print('Received', data)
s.close()
#!/usr/bin/env python
# -*- coding: utf-8 -*-
"""
_并发100个sock连接
"""
import socket,threading
def sock_conn():
    client = socket.socket()
    client.connect(("localhost",8001))
    count = 0
    while True:
        #msg = input(">>:").strip()
        #if len(msg) == 0:continue
        client.send( ("hello %s" %count).encode("utf-8"))
        data = client.recv(1024)
        print("[%s]recv from server:" % threading.get_ident(),data.decode()) #结果
        count +=1
    client.close()

for i in range(100):
    t = threading.Thread(target=sock_conn)
    t.start()

7、论事件驱动与异步IO

以上实现了自动切换,那么什么时候切换呢

通常,我们写服务器处理模型的程序时,有以下几种模型:

(1)每收到一个请求,创建一个新的进程,来处理该请求;

(2)每收到一个请求,创建一个新的线程,来处理该请求;

(3)每收到一个请求,放入一个事件列表,让主进程通过非阻塞I/O方式来处理请求

上面的几种方式,各有千秋,

第(1)中方法,由于创建新的进程的开销比较大,所以,会导致服务器性能比较差,但实现比较简单。

第(2)种方式,由于要涉及到线程的同步,有可能会面临死锁等问题。

第(3)种方式,在写应用程序代码时,逻辑比前面两种都复杂。也就是事件驱动的方式来处理,综合考虑各方面因素,目前主流的网络服务模型就是事件驱动如Nginx,python的网络模型。

看图说话讲事件驱动模型

在UI编程中,常常要对鼠标点击进行相应,首先如何获得鼠标点击呢?
方式一:创建一个线程,该线程一直循环检测是否有鼠标点击,那么这个方式有以下几个缺点
1. CPU资源浪费,可能鼠标点击的频率非常小,但是扫描线程还是会一直循环检测,这会造成很多的CPU资源浪费;如果扫描鼠标点击的接口是阻塞的呢?
2. 如果是堵塞的,又会出现下面这样的问题,如果我们不但要扫描鼠标点击,还要扫描键盘是否按下,由于扫描鼠标时被堵塞了,那么可能永远不会去扫描键盘;
3. 如果一个循环需要扫描的设备非常多,这又会引来响应时间的问题;
所以,该方式是非常不好的。

方式二:就是事件驱动模型
目前大部分的UI编程都是事件驱动模型,如很多UI平台都会提供onClick()事件,这个事件就代表鼠标按下事件。事件驱动模型大体思路如下:
1. 有一个事件(消息)队列;
2. 鼠标按下时,往这个队列中增加一个点击事件(消息);
3. 有个循环,不断从队列取出事件,根据不同的事件,调用不同的函数,如onClick()、onKeyDown()等;
4. 事件(消息)一般都各自保存各自的处理函数指针,这样,每个消息都有独立的处理函数;

事件驱动编程是一种编程范式,这里程序的执行流由外部事件来决定。它的特点是包含一个事件循环,当外部事件发生时使用回调机制来触发相应的处理。另外两种常见的编程范式是(单线程)同步以及多线程编程。

让我们用例子来比较和对比一下单线程、多线程以及事件驱动编程模型。下图展示了随着时间的推移,这三种模式下程序所做的工作。这个程序有3个任务需要完成,每个任务都在等待I/O操作时阻塞自身。阻塞在I/O操作上所花费的时间已经用灰色框标示出来了。

 

在单线程同步模型中,任务按照顺序执行。如果某个任务因为I/O而阻塞,其他所有的任务都必须等待,直到它完成之后它们才能依次执行。这种明确的执行顺序和串行化处理的行为是很容易推断得出的。如果任务之间并没有互相依赖的关系,但仍然需要互相等待的话这就使得程序不必要的降低了运行速度。

在多线程版本中,这3个任务分别在独立的线程中执行。这些线程由操作系统来管理,在多处理器系统上可以并行处理,或者在单处理器系统上交错执行。这使得当某个线程阻塞在某个资源的同时其他线程得以继续执行。与完成类似功能的同步程序相比,这种方式更有效率,但程序员必须写代码来保护共享资源,防止其被多个线程同时访问。多线程程序更加难以推断,因为这类程序不得不通过线程同步机制如锁、可重入函数、线程局部存储或者其他机制来处理线程安全问题,如果实现不当就会导致出现微妙且令人痛不欲生的bug。

(操作系统OS负责IO的操作,我们可以切换之前,调用操作系统IO接口,让操作系统在IO操作结束时候调用回掉函数告诉我,然后我就可以切换回来了。)

在事件驱动版本的程序中,3个任务交错执行,但仍然在一个单独的线程控制中。当处理I/O或者其他昂贵的操作时,注册一个回调到事件循环中,然后当I/O操作完成时继续执行。回调描述了该如何处理某个事件。事件循环轮询所有的事件,当事件到来时将它们分配给等待处理事件的回调函数。这种方式让程序尽可能的得以执行而不需要用到额外的线程。事件驱动型程序比多线程程序更容易推断出行为,因为程序员不需要关心线程安全问题。

当我们面对如下的环境时,事件驱动模型通常是一个好的选择:

  1. 程序中有许多任务,而且…
  2. 任务之间高度独立(因此它们不需要互相通信,或者等待彼此)而且…
  3. 在等待事件到来时,某些任务会阻塞。

当应用程序需要在任务间共享可变的数据时,这也是一个不错的选择,因为这里不需要采用同步处理。

网络应用程序通常都有上述这些特点,这使得它们能够很好的契合事件驱动编程模型。

此处要提出一个问题,就是,上面的事件驱动模型中,只要一遇到IO就注册一个事件,然后主程序就可以继续干其它的事情了,直到io处理完毕后,继续恢复之前中断的任务,这本质上是怎么实现的呢?

7.1、IO多路复用

同步IO和异步IO,阻塞IO和非阻塞IO分别是什么,到底有什么区别?不同的人在不同的上下文下给出的答案是不同的。所以先限定一下本文的上下文。本文讨论的背景是Linux环境下的network IO。

一 概念说明

在进行解释之前,首先要说明几个概念:
- 用户空间和内核空间
- 进程切换
- 进程的阻塞
- 文件描述符
- 缓存 I/O

用户空间与内核空间

现在操作系统都是采用虚拟存储器,那么对32位操作系统而言,它的寻址空间(虚拟存储空间)为4G(2的32次方)。操作系统的核心是内核,独立于普通的应用程序,可以访问受保护的内存空间,也有访问底层硬件设备的所有权限。为了保证用户进程不能直接操作内核(kernel),保证内核的安全,操心系统将虚拟空间划分为两部分,一部分为内核空间,一部分为用户空间。针对linux操作系统而言,将最高的1G字节(从虚拟地址0xC0000000到0xFFFFFFFF),供内核使用,称为内核空间,而将较低的3G字节(从虚拟地址0x00000000到0xBFFFFFFF),供各个进程使用,称为用户空间。

进程切换

为了控制进程的执行,内核必须有能力挂起正在CPU上运行的进程,并恢复以前挂起的某个进程的执行。这种行为被称为进程切换。因此可以说,任何进程都是在操作系统内核的支持下运行的,是与内核紧密相关的。

从一个进程的运行转到另一个进程上运行,这个过程中经过下面这些变化:
1. 保存处理机上下文,包括程序计数器和其他寄存器。
2. 更新PCB信息。

3. 把进程的PCB移入相应的队列,如就绪、在某事件阻塞等队列。
4. 选择另一个进程执行,并更新其PCB。
5. 更新内存管理的数据结构。
6. 恢复处理机上下文。

总而言之就是很耗资源,具体的可以参考这篇文章:进程切换

注:进程控制块(Processing Control Block),是操作系统核心中一种数据结构,主要表示进程状态。其作用是使一个在多道程序环境下不能独立运行的程序(含数据),成为一个能独立运行的基本单位或与其它进程并发执行的进程。或者说,OS是根据PCB来对并发执行的进程进行控制和管理的。 PCB通常是系统内存占用区中的一个连续存区,它存放着操作系统用于描述进程情况及控制进程运行所需的全部信息 

进程的阻塞

正在执行的进程,由于期待的某些事件未发生,如请求系统资源失败、等待某种操作的完成、新数据尚未到达或无新工作做等,则由系统自动执行阻塞原语(Block),使自己由运行状态变为阻塞状态。可见,进程的阻塞是进程自身的一种主动行为,也因此只有处于运行态的进程(获得CPU),才可能将其转为阻塞状态。当进程进入阻塞状态,是不占用CPU资源的

文件描述符fd

文件描述符(File descriptor)是计算机科学中的一个术语,是一个用于表述指向文件的引用的抽象化概念。

文件描述符在形式上是一个非负整数。实际上,它是一个索引值,指向内核为每一个进程所维护的该进程打开文件的记录表。当程序打开一个现有文件或者创建一个新文件时,内核向进程返回一个文件描述符。在程序设计中,一些涉及底层的程序编写往往会围绕着文件描述符展开。但是文件描述符这一概念往往只适用于UNIX、Linux这样的操作系统。

缓存 I/O

缓存 I/O 又被称作标准 I/O,大多数文件系统的默认 I/O 操作都是缓存 I/O。在 Linux 的缓存 I/O 机制中,操作系统会将 I/O 的数据缓存在文件系统的页缓存( page cache )中,也就是说,数据会先被拷贝到操作系统内核的缓冲区中,然后才会从操作系统内核的缓冲区拷贝到应用程序的地址空间。(内核态到用户态)

缓存 I/O 的缺点:
数据在传输过程中需要在应用程序地址空间和内核进行多次数据拷贝操作,这些数据拷贝操作所带来的 CPU 以及内存开销是非常大的。(访问文件或者硬件等只能通过内核来实现,用户调用操作系统的接口,通过内核访问,数据在内核空间,需要拷贝到用户空间)

二 IO模式

刚才说了,对于一次IO访问(以read举例),数据会先被拷贝到操作系统内核的缓冲区中,然后才会从操作系统内核的缓冲区拷贝到应用程序的地址空间。所以说,当一个read操作发生时,它会经历两个阶段:
1. 等待数据准备 (Waiting for the data to be ready)
2. 将数据从内核拷贝到进程中 (Copying the data from the kernel to the process)

正式因为这两个阶段,linux系统产生了下面五种网络模式的方案。
- 阻塞 I/O(blocking IO)
- 非阻塞 I/O(nonblocking IO)
- I/O 多路复用( IO multiplexing)
- 信号驱动 I/O( signal driven IO)
- 异步 I/O(asynchronous IO)

注:由于signal driven IO在实际中并不常用,所以我这只提及剩下的四种IO Model。

阻塞 I/O(blocking IO)

在linux中,默认情况下所有的socket都是blocking,一个典型的读操作流程大概是这样:

 

当用户进程调用了recvfrom这个系统调用,kernel就开始了IO的第一个阶段:准备数据(对于网络IO来说,很多时候数据在一开始还没有到达。比如,还没有收到一个完整的UDP包。这个时候kernel就要等待足够的数据到来)。这个过程需要等待,也就是说数据被拷贝到操作系统内核的缓冲区中是需要一个过程的。而在用户进程这边,整个进程会被阻塞(当然,是进程自己选择的阻塞)。当kernel一直等到数据准备好了,它就会将数据从kernel中拷贝到用户内存,然后kernel返回结果,用户进程才解除block的状态,重新运行起来。

所以,blocking IO的特点就是在IO执行的两个阶段都被block了。

非阻塞 I/O(nonblocking IO)

linux下,可以通过设置socket使其变为non-blocking。当对一个non-blocking socket执行读操作时,流程是这个样子:

当用户进程发出read操作时,如果kernel中的数据还没有准备好,那么它并不会block用户进程,而是立刻返回一个error。从用户进程角度讲 ,它发起一个read操作后,并不需要等待,而是马上就得到了一个结果。用户进程判断结果是一个error时,它就知道数据还没有准备好,于是它可以再次发送read操作。一旦kernel中的数据准备好了,并且又再次收到了用户进程的system call,那么它马上就将数据拷贝到了用户内存,然后返回。

所以,nonblocking IO的特点是用户进程需要不断的主动询问kernel数据好了没有。

I/O 多路复用( IO multiplexing)

IO multiplexing就是我们说的select,poll,epoll,有些地方也称这种IO方式为event driven IO。select/epoll的好处就在于单个process就可以同时处理多个网络连接的IO。它的基本原理就是select,poll,epoll这个function会不断的轮询所负责的所有socket,当某个socket有数据到达了,就通知用户进程。

 

当用户进程调用了select,那么整个进程会被block,而同时,kernel会“监视”所有select负责的socket,当任何一个socket中的数据准备好了,select就会返回。这个时候用户进程再调用read操作,将数据从kernel拷贝到用户进程。

所以,I/O 多路复用的特点是通过一种机制一个进程能同时等待多个文件描述符,而这些文件描述符(套接字描述符)其中的任意一个进入读就绪状态,select()函数就可以返回。

这个图和blocking IO的图其实并没有太大的不同,事实上,还更差一些。因为这里需要使用两个system call (select 和 recvfrom),而blocking IO只调用了一个system call (recvfrom)。但是,用select的优势在于它可以同时处理多个connection。

所以,如果处理的连接数不是很高的话,使用select/epoll的web server不一定比使用multi-threading + blocking IO的web server性能更好,可能延迟还更大。select/epoll的优势并不是对于单个连接能处理得更快,而是在于能处理更多的连接。)

在IO multiplexing Model中,实际中,对于每一个socket,一般都设置成为non-blocking,但是,如上图所示,整个用户的process其实是一直被block的。只不过process是被select这个函数block,而不是被socket IO给block。

异步 I/O(asynchronous IO)

inux下的asynchronous IO其实用得很少。先看一下它的流程:

用户进程发起read操作之后,立刻就可以开始去做其它的事。而另一方面,从kernel的角度,当它受到一个asynchronous read之后,首先它会立刻返回,所以不会对用户进程产生任何block。然后,kernel会等待数据准备完成,然后将数据拷贝到用户内存,当这一切都完成之后,kernel会给用户进程发送一个signal,告诉它read操作完成了。

 

总结

blocking和non-blocking的区别

调用blocking IO会一直block住对应的进程直到操作完成,而non-blocking IO在kernel还准备数据的情况下会立刻返回。

synchronous IO和asynchronous IO的区别

在说明synchronous IO和asynchronous IO的区别之前,需要先给出两者的定义。POSIX的定义是这样子的:
- A synchronous I/O operation causes the requesting process to be blocked until that I/O operation completes;
- An asynchronous I/O operation does not cause the requesting process to be blocked;

两者的区别就在于synchronous IO做”IO operation”的时候会将process阻塞。按照这个定义,之前所述的blocking IO,non-blocking IO,IO multiplexing都属于synchronous IO。

有人会说,non-blocking IO并没有被block啊。这里有个非常“狡猾”的地方,定义中所指的”IO operation”是指真实的IO操作,就是例子中的recvfrom这个system call。non-blocking IO在执行recvfrom这个system call的时候,如果kernel的数据没有准备好,这时候不会block进程。但是,当kernel中数据准备好的时候,recvfrom会将数据从kernel拷贝到用户内存中,这个时候进程是被block了,在这段时间内,进程是被block的。

而asynchronous IO则不一样,当进程发起IO 操作之后,就直接返回再也不理睬了,直到kernel发送一个信号,告诉进程说IO完成。在这整个过程中,进程完全没有被block。

各个IO Model的比较如图所示:

通过上面的图片,可以发现non-blocking IO和asynchronous IO的区别还是很明显的。在non-blocking IO中,虽然进程大部分时间都不会被block,但是它仍然要求进程去主动的check,并且当数据准备完成以后,也需要进程主动的再次调用recvfrom来将数据拷贝到用户内存。而asynchronous IO则完全不同。它就像是用户进程将整个IO操作交给了他人(kernel)完成,然后他人做完后发信号通知。在此期间,用户进程不需要去检查IO操作的状态,也不需要主动的去拷贝数据。

三 I/O 多路复用之select、poll、epoll详解

首先列一下,sellect、poll、epoll三者的区别 
select 
select最早于1983年出现在4.2BSD中,它通过一个select()系统调用来监视多个文件描述符的数组,当select()返回后,该数组中就绪的文件描述符便会被内核修改标志位,使得进程可以获得这些文件描述符从而进行后续的读写操作。

select目前几乎在所有的平台上支持,其良好跨平台支持也是它的一个优点,事实上从现在看来,这也是它所剩不多的优点之一。

select的一个缺点在于单个进程能够监视的文件描述符的数量存在最大限制,在Linux上一般为1024,不过可以通过修改宏定义甚至重新编译内核的方式提升这一限制。

另外,select()所维护的存储大量文件描述符的数据结构,随着文件描述符数量的增大,其复制的开销也线性增长。同时,由于网络响应时间的延迟使得大量TCP连接处于非活跃状态,但调用select()会对所有socket进行一次线性扫描,所以这也浪费了一定的开销。

poll 
poll在1986年诞生于System V Release 3,它和select在本质上没有多大差别,但是poll没有最大文件描述符数量的限制。

poll和select同样存在一个缺点就是,包含大量文件描述符的数组被整体复制于用户态和内核的地址空间之间,而不论这些文件描述符是否就绪,它的开销随着文件描述符数量的增加而线性增大。

另外,select()和poll()将就绪的文件描述符告诉进程后,如果进程没有对其进行IO操作,那么下次调用select()和poll()的时候将再次报告这些文件描述符,所以它们一般不会丢失就绪的消息,这种方式称为水平触发(Level Triggered)。

epoll 
直到Linux2.6才出现了由内核直接支持的实现方法,那就是epoll,它几乎具备了之前所说的一切优点,被公认为Linux2.6下性能最好的多路I/O就绪通知方法。

epoll可以同时支持水平触发和边缘触发(Edge Triggered,只告诉进程哪些文件描述符刚刚变为就绪状态,它只说一遍,如果我们没有采取行动,那么它将不会再次告知,这种方式称为边缘触发),理论上边缘触发的性能要更高一些,但是代码实现相当复杂。

epoll同样只告知那些就绪的文件描述符,而且当我们调用epoll_wait()获得就绪文件描述符时,返回的不是实际的描述符,而是一个代表就绪描述符数量的值,你只需要去epoll指定的一个数组中依次取得相应数量的文件描述符即可,这里也使用了内存映射(mmap)技术,这样便彻底省掉了这些文件描述符在系统调用时复制的开销。

另一个本质的改进在于epoll采用基于事件的就绪通知方式。在select/poll中,进程只有在调用一定的方法后,内核才对所有监视的文件描述符进行扫描,而epoll事先通过epoll_ctl()来注册一个文件描述符,一旦基于某个文件描述符就绪时,内核会采用类似callback的回调机制,迅速激活这个文件描述符,当进程调用epoll_wait()时便得到通知。

epoll是应用最多的场景,没有单个进程能够监视的文件描述符的数量存在最大限制,如一个链接大概4K,在一个1G的操作系统,可以支持10万个连接,当前Ngnix就是基于epoll实现。

epoll是IO多路复用,没有异步IO厉害,可以直接把数据返回,但是实现复杂,所以应用最多的仍然是epoll,IO多路复用

目前所谓的异步IO如Ngnix,turnodo,twitst,其实都是IO多路复用。真正的异步IO,在python3.0中有一个模块asyncio。

Python select 

Python的select()方法直接调用操作系统的IO接口,它监控sockets,open files, and pipes(所有带fileno()方法的文件句柄)何时变成readable 和writeable, 或者通信错误,select()使得同时监控多个连接变的简单,并且这比写一个长循环来等待和监控多客户端连接要高效,因为select直接通过操作系统提供的C的网络接口进行操作,而不是通过Python的解释器。

注意:Using Python’s file objects with select() works for Unix, but is not supported under Windows.

select()方法接收并监控3个通信列表, 第一个是所有的输入的data,就是指外部发过来的数据,第2个是监控和接收所有要发出去的data(outgoing data),第3个监控错误信息,接下来我们需要创建2个列表来包含输入和输出信息来传给select().

通过代码实例select实现一个socket
#_*_coding:utf-8_*_
import select
import socket
import sys
import queue
server = socket.socket()
server.setblocking(0)
server_addr = ('localhost',10000)
print('starting up on %s port %s' % server_addr)
server.bind(server_addr)
server.listen(5)

inputs = [server, ] #自己也要监测呀,因为server本身也是个fd
outputs = []

message_queues = {}

while True:
    print("waiting for next event...")

    readable, writeable, exeptional = select.select(inputs,outputs,inputs) #如果没有任何fd就绪,那程序就会一直阻塞在这里

    for s in readable: #每个s就是一个socket

        if s is server: #别忘记,上面我们server自己也当做一个fd放在了inputs列表里,传给了select,如果这个s是server,代表server这个fd就绪了,
            #就是有活动了, 什么情况下它才有活动? 当然 是有新连接进来的时候 呀
            #新连接进来了,接受这个连接
            conn, client_addr = s.accept()
            print("new connection from",client_addr)
            conn.setblocking(0)
            inputs.append(conn) #为了不阻塞整个程序,我们不会立刻在这里开始接收客户端发来的数据, 把它放到inputs里, 下一次loop时,这个新连接
            #就会被交给select去监听,如果这个连接的客户端发来了数据 ,那这个连接的fd在server端就会变成就续的,select就会把这个连接返回,返回到
            #readable 列表里,然后你就可以loop readable列表,取出这个连接,开始接收数据了, 下面就是这么干 的

            message_queues[conn] = queue.Queue() #接收到客户端的数据后,不立刻返回 ,暂存在队列里,以后发送

        else: #s不是server的话,那就只能是一个 与客户端建立的连接的fd了
            #客户端的数据过来了,在这接收
            data = s.recv(1024)
            if data:
                print("收到来自[%s]的数据:" % s.getpeername()[0], data)
                message_queues[s].put(data) #收到的数据先放到queue里,一会返回给客户端
                if s not  in outputs:
                    outputs.append(s) #为了不影响处理与其它客户端的连接 , 这里不立刻返回数据给客户端


            else:#如果收不到data代表什么呢? 代表客户端断开了呀
                print("客户端断开了",s)

                if s in outputs:
                    outputs.remove(s) #清理已断开的连接

                inputs.remove(s) #清理已断开的连接

                del message_queues[s] ##清理已断开的连接


    for s in writeable:
        try :
            next_msg = message_queues[s].get_nowait()
        except queue.Empty:
            print("client [%s]" %s.getpeername()[0], "queue is empty..")
            outputs.remove(s)
        else:
            print("sending msg to [%s]"%s.getpeername()[0], next_msg)
            s.send(next_msg.upper())

    for s in exeptional:
        print("handling exception for ",s.getpeername())
        inputs.remove(s)
        if s in outputs:
            outputs.remove(s)
        s.close()

        del message_queues[s]

客户端

#!/usr/bin/env python
# _*_ coding:utf-8 _*_
import socket
import sys
messages = [ b'This is the message. ',
             b'It will be sent ',
             b'in parts.',
             ]
server_address = ('localhost', 10000)
# Create a TCP/IP socket
socks = [ socket.socket(socket.AF_INET, socket.SOCK_STREAM),
          socket.socket(socket.AF_INET, socket.SOCK_STREAM),
          ]
# Connect the socket to the port where the server is listening
print('connecting to %s port %s' % server_address)
for s in socks:
    s.connect(server_address)

for message in messages:
    # Send messages on both sockets
    for s in socks:
        print('%s: sending "%s"' % (s.getsockname(), message) )
        s.send(message)
    # Read responses on both sockets
    for s in socks:
        data = s.recv(1024)
        print( '%s: received "%s"' % (s.getsockname(), data) )
        if not data:
            print(sys.stderr, 'closing socket', s.getsockname() )

上面的操作是通过基本的select实现了,python中做了更简单的封装

selectors模块

#!/usr/bin/env python
# _*_ coding:utf-8 _*_
import selectors
import socket
sel = selectors.DefaultSelector()
def accept(sock, mask):
    conn, addr = sock.accept()  # Should be ready
    print('accepted', conn, 'from', addr)
    conn.setblocking(False)
    sel.register(conn, selectors.EVENT_READ, read)

def read(conn, mask):
    data = conn.recv(1000)  # Should be ready
    if data:
        print('echoing', repr(data), 'to', conn)
        conn.send(data)  # Hope it won't block
    else:
        print('closing', conn)
        sel.unregister(conn)
        conn.close()

sock = socket.socket()
sock.bind(('localhost', 10000))
sock.listen(100)
sock.setblocking(False)
sel.register(sock, selectors.EVENT_READ, accept)

while True:
    events = sel.select()
    for key, mask in events:
        callback = key.data
        callback(key.fileobj, mask)

 

select,poll,epoll都是IO多路复用的机制。I/O多路复用就是通过一种机制,一个进程可以监视多个描述符,一旦某个描述符就绪(一般是读就绪或者写就绪),能够通知程序进行相应的读写操作。但select,poll,epoll本质上都是同步I/O,因为他们都需要在读写事件就绪后自己负责进行读写,也就是说这个读写过程是阻塞的,而异步I/O则无需自己负责进行读写,异步I/O的实现会负责把数据从内核拷贝到用户空间。

select

1

select(rlist, wlist, xlist, timeout=None)

select 函数监视的文件描述符分3类,分别是writefds、readfds、和exceptfds。调用后select函数会阻塞,直到有描述符就绪(有数据 可读、可写、或者有except),或者超时(timeout指定等待时间,如果立即返回设为null即可),函数返回。当select函数返回后,可以 通过遍历fdset,来找到就绪的描述符。

select目前几乎在所有的平台上支持,其良好跨平台支持也是它的一个优点。select的一 个缺点在于单个进程能够监视的文件描述符的数量存在最大限制,在Linux上一般为1024,可以通过修改宏定义甚至重新编译内核的方式提升这一限制,但 是这样也会造成效率的降低。

poll

1

int poll (struct pollfd *fds, unsigned int nfds, int timeout);

不同与select使用三个位图来表示三个fdset的方式,poll使用一个 pollfd的指针实现。

struct pollfd {
    int fd; /* file descriptor */
    short events; /* requested events to watch */
    short revents; /* returned events witnessed */
};

pollfd结构包含了要监视的event和发生的event,不再使用select“参数-值”传递的方式。同时,pollfd并没有最大数量限制(但是数量过大后性能也是会下降)。 和select函数一样,poll返回后,需要轮询pollfd来获取就绪的描述符。

从上面看,select和poll都需要在返回后,通过遍历文件描述符来获取已经就绪的socket。事实上,同时连接的大量客户端在一时刻可能只有很少的处于就绪状态,因此随着监视的描述符数量的增长,其效率也会线性下降。 

epoll

epoll是在2.6内核中提出的,是之前的select和poll的增强版本。相对于select和poll来说,epoll更加灵活,没有描述符限制。epoll使用一个文件描述符管理多个描述符,将用户关系的文件描述符的事件存放到内核的一个事件表中,这样在用户空间和内核空间的copy只需一次。

一 epoll操作过程

epoll操作过程需要三个接口,分别如下:

1

2

3

int epoll_create(int size);//创建一个epoll的句柄,size用来告诉内核这个监听的数目一共有多大

int epoll_ctl(int epfd, int op, int fd, struct epoll_event *event);

int epoll_wait(int epfd, struct epoll_event * events, int maxevents, int timeout);

1. int epoll_create(int size);
创建一个epoll的句柄,size用来告诉内核这个监听的数目一共有多大,这个参数不同于select()中的第一个参数,给出最大监听的fd+1的值,参数size并不是限制了epoll所能监听的描述符最大个数,只是对内核初始分配内部数据结构的一个建议
当创建好epoll句柄后,它就会占用一个fd值,在linux下如果查看/proc/进程id/fd/,是能够看到这个fd的,所以在使用完epoll后,必须调用close()关闭,否则可能导致fd被耗尽。

2. int epoll_ctl(int epfd, int op, int fd, struct epoll_event *event);
函数是对指定描述符fd执行op操作。
- epfd:是epoll_create()的返回值。
- op:表示op操作,用三个宏来表示:添加EPOLL_CTL_ADD,删除EPOLL_CTL_DEL,修改EPOLL_CTL_MOD。分别添加、删除和修改对fd的监听事件。
- fd:是需要监听的fd(文件描述符)
- epoll_event:是告诉内核需要监听什么事

3. int epoll_wait(int epfd, struct epoll_event * events, int maxevents, int timeout);
等待epfd上的io事件,最多返回maxevents个事件。
参数events用来从内核得到事件的集合,maxevents告之内核这个events有多大,这个maxevents的值不能大于创建epoll_create()时的size,参数timeout是超时时间(毫秒,0会立即返回,-1将不确定,也有说法说是永久阻塞)。该函数返回需要处理的事件数目,如返回0表示已超时。

epoll socket echo server 这段代码由于windows不支持epoll无法在windows上运行,可以在mac,linux上运行

#_*_coding:utf-8_*_
__author__ = 'Alex Li'

import socket, logging
import select, errno

logger = logging.getLogger("network-server")

def InitLog():
    logger.setLevel(logging.DEBUG)

    fh = logging.FileHandler("network-server.log")
    fh.setLevel(logging.DEBUG)
    ch = logging.StreamHandler()
    ch.setLevel(logging.ERROR)

    formatter = logging.Formatter("%(asctime)s - %(name)s - %(levelname)s - %(message)s")
    ch.setFormatter(formatter)
    fh.setFormatter(formatter)

    logger.addHandler(fh)
    logger.addHandler(ch)


if __name__ == "__main__":
    InitLog()

    try:
        # 创建 TCP socket 作为监听 socket
        listen_fd = socket.socket(socket.AF_INET, socket.SOCK_STREAM, 0)
    except socket.error as  msg:
        logger.error("create socket failed")

    try:
        # 设置 SO_REUSEADDR 选项
        listen_fd.setsockopt(socket.SOL_SOCKET, socket.SO_REUSEADDR, 1)
    except socket.error as  msg:
        logger.error("setsocketopt SO_REUSEADDR failed")

    try:
        # 进行 bind -- 此处未指定 ip 地址,即 bind 了全部网卡 ip 上
        listen_fd.bind(('', 2003))
    except socket.error as  msg:
        logger.error("bind failed")

    try:
        # 设置 listen 的 backlog 数
        listen_fd.listen(10)
    except socket.error as  msg:
        logger.error(msg)

    try:
        # 创建 epoll 句柄
        epoll_fd = select.epoll()
        # 向 epoll 句柄中注册 监听 socket 的 可读 事件
        epoll_fd.register(listen_fd.fileno(), select.EPOLLIN)
    except select.error as  msg:
        logger.error(msg)

    connections = {}
    addresses = {}
    datalist = {}
    while True:
        # epoll 进行 fd 扫描的地方 -- 未指定超时时间则为阻塞等待
        epoll_list = epoll_fd.poll()

        for fd, events in epoll_list:
            # 若为监听 fd 被激活
            if fd == listen_fd.fileno():
                # 进行 accept -- 获得连接上来 client 的 ip 和 port,以及 socket 句柄
                conn, addr = listen_fd.accept()
                logger.debug("accept connection from %s, %d, fd = %d" % (addr[0], addr[1], conn.fileno()))
                # 将连接 socket 设置为 非阻塞
                conn.setblocking(0)
                # 向 epoll 句柄中注册 连接 socket 的 可读 事件
                epoll_fd.register(conn.fileno(), select.EPOLLIN | select.EPOLLET)
                # 将 conn 和 addr 信息分别保存起来
                connections[conn.fileno()] = conn
                addresses[conn.fileno()] = addr
            elif select.EPOLLIN & events:
                # 有 可读 事件激活
                datas = ''
                while True:
                    try:
                        # 从激活 fd 上 recv 10 字节数据
                        data = connections[fd].recv(10)
                        # 若当前没有接收到数据,并且之前的累计数据也没有
                        if not data and not datas:
                            # 从 epoll 句柄中移除该 连接 fd
                            epoll_fd.unregister(fd)
                            # server 侧主动关闭该 连接 fd
                            connections[fd].close()
                            logger.debug("%s, %d closed" % (addresses[fd][0], addresses[fd][1]))
                            break
                        else:
                            # 将接收到的数据拼接保存在 datas 中
                            datas += data
                    except socket.error as  msg:
                        # 在 非阻塞 socket 上进行 recv 需要处理 读穿 的情况
                        # 这里实际上是利用 读穿 出 异常 的方式跳到这里进行后续处理
                        if msg.errno == errno.EAGAIN:
                            logger.debug("%s receive %s" % (fd, datas))
                            # 将已接收数据保存起来
                            datalist[fd] = datas
                            # 更新 epoll 句柄中连接d 注册事件为 可写
                            epoll_fd.modify(fd, select.EPOLLET | select.EPOLLOUT)
                            break
                        else:
                            # 出错处理
                            epoll_fd.unregister(fd)
                            connections[fd].close()
                            logger.error(msg)
                            break
            elif select.EPOLLHUP & events:
                # 有 HUP 事件激活
                epoll_fd.unregister(fd)
                connections[fd].close()
                logger.debug("%s, %d closed" % (addresses[fd][0], addresses[fd][1]))
            elif select.EPOLLOUT & events:
                # 有 可写 事件激活
                sendLen = 0
                # 通过 while 循环确保将 buf 中的数据全部发送出去
                while True:
                    # 将之前收到的数据发回 client -- 通过 sendLen 来控制发送位置
                    sendLen += connections[fd].send(datalist[fd][sendLen:])
                    # 在全部发送完毕后退出 while 循环
                    if sendLen == len(datalist[fd]):
                        break
                # 更新 epoll 句柄中连接 fd 注册事件为 可读
                epoll_fd.modify(fd, select.EPOLLIN | select.EPOLLET)
            else:
                # 其他 epoll 事件不进行处理
                continue

 

你可能感兴趣的:(Python)