官网链接:http://cvpr2020.thecvf.com/
时间:Seattle, Washington,2020年6月14日-6月19日
Rethinking Data Augmentation for Image Super-resolution: A Comprehensive Analysis and a New Strategy
论文:https://arxiv.org/abs/2004.00448
代码:https://github.com/clovaai/cutblur
Closed-loop Matters: Dual Regression Networks for Single Image Super-Resolution
论文:https://arxiv.org/abs/2003.07018
代码:https://github.com/guoyongcs/DRN
描述:Dual Regression, SISR STOA
Light Field Spatial Super-resolution via Deep Combinatorial Geometry Embedding and Structural Consistency Regularization(oral)
论文:https://arxiv.org/abs/2004.02215
Structure-Preserving Super Resolution with Gradient Guidance
论文:https://arxiv.org/pdf/2003.13081.pdf
代码:https://github.com/Maclory/SPSR
描述:Gradient Guidance, GAN
Deep unfolding network for image super-resolution
论文:https://arxiv.org/pdf/2003.10428.pdf
代码:https://github.com/cszn/USRNet
PULSE: Self-Supervised Photo Upsampling via Latent Space Exploration of Generative Models
论文:https://arxiv.org/pdf/2003.03808.pdf
EventSR: From Asynchronous Events to Image Reconstruction, Restoration, and Super-Resolution via End-to-End Adversarial Learning
论文:https://arxiv.org/pdf/2003.07640.pdf
Unified Dynamic Convolutional Network for Super-Resolution with Variational Degradations
论文:https://arxiv.org/abs/2004.06965
描述:Unified Dynamic,SISR, denoise
Zooming Slow-Mo: Fast and Accurate One-Stage Space-Time Video Super-Resolution
论文:https://arxiv.org/abs/2002.11616
代码:https://github.com/Mukosame/Zooming-Slow-Mo-CVPR-2020
Space-Time-Aware Multi-Resolution Video Enhancement
论文:http://arxiv.org/abs/2003.13170
代码:https://github.com/alterzero/STARnet
主页:https://alterzero.github.io/projects/STAR.html
Meta-Transfer Learning for Zero-Shot Super-Resolution
论文:https://arxiv.org/abs/2002.12213
代码:https://github.com/JWSoh/MZSR
第 34 届AAAI 2020 在 2 月 7 日-2 月 12 日于美国纽约举办。
Joint Super-Resolution and Alignment of Tiny Faces
论文:https://arxiv.org/pdf/1911.08566
Scale-wise Convolution for Image Restoration
论文:https://arxiv.org/pdf/1912.09028.pdf
Image Formation Model Guided Deep Image Super-Resolution
论文:https://arxiv.org/abs/1908.06444
代码:https://github.com/jspan/PHYSICS(404?)
Video Face Super-Resolution with Motion-Adaptive Feedback Cell
论文:https://arxiv.org/pdf/2002.06378https://blog.csdn.net/yyywxk/article/details/105440979
代码:https://github.com/JihyongOh/FISR
FISR: Deep Joint Frame Interpolation and Super-Resolution with A Multi-scale Temporal Loss
论文:https://arxiv.org/pdf/1912.07213
JSI-GAN: GAN-Based Joint Super-Resolution and Inverse Tone-Mapping with Pixel-Wise Task-Specific Filters for UHD HDR Video
论文:https://arxiv.org/pdf/1909.04391
VESR-Net: The Winning Solution to Youku Video Enhancement and Super-Resolution Challenge
论文:https://arxiv.org/pdf/2003.02115.pdf
描述:The champion of Youku-VESR challenge
Deep Space-Time Video Upsampling Networks
论文:https://arxiv.org/pdf/2004.02432.pdf
代码:https://github.com/JaeYeonKang/STVUN-Pytorch
描述:Video Super-Resolution, Video Frame Interpolation, Joint space-time upsampling
DeepSEE: Deep Disentangled Semantic Explorative Extreme Super-Resolution
论文:https://arxiv.org/pdf/2004.04433.pdf
代码:https://mcbuehler.github.io/DeepSEE/
描述:Extreme super-resolution,32× magnification
Unsupervised Real-world Image Super Resolution via Domain-distance Aware Training
论文:https://arxiv.org/pdf/2004.01178.pdf
代码:https://github.com/ShuhangGu/DASR(Coming soon!)
描述:Real-World Image Super-Resolution, Unsupervised SuperResolution, Domain Adaptation.
Optimizing Generative Adversarial Networks for Image Super Resolution via Latent Space Regularization
论文:https://arxiv.org/pdf/2001.08126.pdf
描述:Latent Space Regularization for srgan
Hierarchical Neural Architecture Search for Single Image Super-Resolution
论文:https://arxiv.org/pdf/2003.04619.pdf
代码:https://github.com/guoyongcs/HNAS-SR
描述:Hierarchical Neural Architecture Search, Lightweight
Learning for Scale-Arbitrary Super-Resolution from Scale-Specific Networks
论文:https://arxiv.org/pdf/2004.03791.pdf
描述:Scale-Arbitrary Super-Resolution, Knowledge Transfer
Deep Adaptive Inference Networks for Single Image Super-Resolution
论文:https://arxiv.org/pdf/2004.03915.pdf
代码:https://github.com/csmliu/AdaDSR
Stochastic Frequency Masking to Improve Super-Resolution and Denoising Networks
论文:https://arxiv.org/pdf/2003.07119.pdf
代码: https://github.com/sfm-sr-denoising/sfm
DDet: Dual-path Dynamic Enhancement Network for Real-World Image Super-Resolution
论文:https://arxiv.org/abs/2002.11079
代码:https://github.com/ykshi/DDet
Deep Interleaved Network for Image Super-Resolution With Asymmetric
Co-Attention (IJCAI-PRICAI 2020)
论文:https://arxiv.org/abs/2004.11814
描述:SISR,asymmetric co-attention
Pyramid Attention Networks for Image Restoration
论文:https://arxiv.org/pdf/2004.13824.pdf
代码:https://github.com/SHI-Labs/Pyramid-Attention-Networks
Deep Generative Adversarial Residual Convolutional Networks for Real-World Super-Resolution
论文:https://arxiv.org/pdf/2005.00953.pdf
代码:https://github.com/RaoUmer/SRResCGAN
参考资料
https://github.com/amusi/CVPR2020-Code
https://github.com/extreme-assistant/CVPR2020-Paper-Code-Interpretation/blob/master/CVPR2020.md
https://github.com/ChaofWang/Awesome-Super-Resolution
https://paperswithcode.com/task/image-super-resolution/
————————————————
版权声明:本文为CSDN博主「yyywxk」的原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接及本声明。
原文链接:https://blog.csdn.net/yyywxk/java/article/details/105440979