基于OpenCV 的图像分割

1、图像阈值化
源代码:

#include "opencv2/highgui/highgui.hpp"
#include "opencv2/imgproc/imgproc.hpp"
#include 
using namespace std;
using namespace cv;
int thresholds=50;
int model=2;
Mat image,srcimage;
void track(int ,void *)
{
    Mat result;
    threshold(srcimage,result,thresholds,255,CV_THRESH_BINARY);
    //imshow("原图",result);
	if(model==0)
	{
		threshold(srcimage,result,thresholds,255,CV_THRESH_BINARY);
		imshow("分割",result);
	}
	if(model==1)
	{
		threshold(srcimage,result,thresholds,255,THRESH_BINARY_INV);
		imshow("分割",result);	
	}
	if(model==2)
	{
		threshold(srcimage,result,thresholds,255,THRESH_TRUNC);
		imshow("分割",result);
	}
	if(model==3)
	{
		threshold(srcimage,result,thresholds,255,THRESH_TOZERO);
		imshow("分割",result);
	}
	if(model==4)
	{
		threshold(srcimage,result,thresholds,255,THRESH_TOZERO_INV);
		imshow("分割",result);
	}
}
int main()
{
    image=imread("2.2.tif");
    if(!image.data)
    {
        return 0;
    }
    cvtColor(image,srcimage,CV_BGR2GRAY);
    namedWindow("分割",WINDOW_AUTOSIZE);
    cv::createTrackbar("阈a值:","分割",&thresholds,255,track);
	cv::createTrackbar("模式:","分割",&model,4,track);
    track(thresholds,0);
	track(model,0);
    waitKey(0);
    return 0;
}

实现结果:
基于OpenCV 的图像分割_第1张图片
2、阈值处理

    //阈值处理
    #include "opencv2/core/core.hpp"
    #include "opencv2/highgui/highgui.hpp"
    #include "opencv2/imgproc/imgproc.hpp"
    
    using namespace cv;
    using namespace std;
    
    int main()
    {
    	printf("键盘按键ESC--退出程序");
    	Mat g_srcImage = imread("1.tif",0);
    	if(!g_srcImage.data)
    	{
    		printf("读取图片失败");
    	}
    	imshow("原始图",g_srcImage);
    
    	//大津法阈值分割显示
    	/*大津法,简称OTSU.它是按图像的灰度特性,将图像分成背景
    	和目标2部分。背景和目标之间的类间方差越大,说明构成图像
    	的2部分的差别越大,当部分目标错分为背景或部分背景错分为
    	目标都会导致2部分差别变小。*/
    	Mat OtsuImage;
    	threshold(g_srcImage,OtsuImage,0,255,THRESH_OTSU);//0不起作用,可为任意阈值
    	imshow("OtsuImage",OtsuImage);
    
    	//自适应分割并显示
    	Mat AdaptImage;
    	//THRESH_BINARY_INV:参数二值化取反
    	adaptiveThreshold(g_srcImage,AdaptImage,255,0,THRESH_BINARY_INV,7,8);
    	imshow("AdaptImage",AdaptImage);
    
    	while(1)
    	{
    		int key;
    		key = waitKey(20);
    		if((char)key == 27)
    		{ break; }
    	}
    }

基于OpenCV 的图像分割_第2张图片
3、拉普拉斯检测

//Laplacian检测
#include "opencv2/core/core.hpp"
#include "opencv2/highgui/highgui.hpp"
#include "opencv2/imgproc/imgproc.hpp"
using namespace cv;
using namespace std;

/*,在只关心边缘的位置而不考虑其周围的象素灰度差值时比较合适。
Laplace 算子对孤立象素的响应要比对边缘或线的响应要更强烈,因此
只适用于无噪声图象。存在噪声情况下,使用 Laplacian 算子检测边
缘之前需要先进行低通滤波。*/
int main()
{
	Mat src,src_gray,dst,abs_dst;
	src = imread("1.jpg");
	imshow("原始图像",src);

	//高斯滤波
	GaussianBlur(src,src,Size(3,3),0,0,BORDER_DEFAULT);
	//转化为灰度图,输入只能为单通道
	cvtColor(src,src_gray,CV_BGR2GRAY);

	Laplacian(src_gray,dst,CV_16S,3,1,0,BORDER_DEFAULT);
	convertScaleAbs(dst,abs_dst);
	imshow("效果图Laplace变换",abs_dst);
	waitKey();
	return 0;

}

效果图:

4、canny算法的边缘检测
源代码

#include "opencv2/core/core.hpp"
#include "opencv2/highgui/highgui.hpp"
#include "opencv2/imgproc/imgproc.hpp"
using namespace cv;
using namespace std;
/*如果某一像素位置的幅值超过高阈值,该像素被保留为边缘像素。如果某
一像素位置的幅值小于低阈值,该像素被排除。如果某一像素位置的幅值在
两个阈值之间,该像素仅仅在连接到一个高于高阈值的像素时被保留。 */
int main()
{
	Mat picture2=imread("1.jpg");
	Mat new_picture2;
	Mat picture2_1=picture2.clone();
	Mat gray_picture2 , edge , new_edge;
	imshow("【原始图】Canny边缘检测" , picture2);
	Canny(picture2_1 , new_picture2 ,150 , 100 ,3  );
	imshow("【效果图】Canny边缘检测", new_picture2 );
	Mat dstImage,grayImage;
	//dstImage与srcImage同大小类型
	dstImage.create(picture2_1.size() , picture2_1.type());
	cvtColor(picture2_1,gray_picture2,CV_BGR2GRAY);//转化为灰度图
	blur(gray_picture2 , edge , Size(3,3));//用3x3的内核降噪
	Canny(edge,edge,3,9,3);
	dstImage = Scalar::all(0);//将dst内所有元素设置为0
	//使用canny算子的边缘图edge作为掩码,将原图拷贝到dst中
	picture2_1.copyTo(dstImage,edge);
	imshow("效果图Canny边缘检测2",dstImage);
	waitKey();
}

基于OpenCV 的图像分割_第3张图片
5、图像的分水岭算法
源代码:

#include "opencv2/core/core.hpp"
#include "opencv2/highgui/highgui.hpp"
#include "opencv2/imgproc/imgproc.hpp"
#include  

using namespace cv;
using namespace std;

#define WINDOW_NAME1 "显示/操作窗口"
#define WINDOW_NAME2 "分水岭算法效果图"

Mat g_maskImage,g_srcImage;
Point prevPt(-1,-1);

static void ShowHelpText();
static void on_Mouse(int event,int x,int y,int flags,void*);

//输出一些帮助信息
static void ShowHelpText()
{
	printf("当前使用的版本为:"CV_VERSION);
	printf("\n");
	printf("分水岭算法---点中图片进行鼠标或按键操作\n");
	printf("请先用鼠标在图片窗口中标记出大致的区域,\n然后再按键【1】或者【space】启动算法");
	printf("\n按键操作说明:\n"
		"键盘按键【1】或者【space】--运行的分水岭分割算法\n"
		"键盘按键【2】--回复原始图片\n"
		"键盘按键【ESC】--退出程序\n");
}

static void on_Mouse(int event,int x,int y,int flags,void*)
{
	if(x<0||x>=g_srcImage.cols||y<0||y>=g_srcImage.rows)
		return;


	if(event == CV_EVENT_LBUTTONUP||!(flags & CV_EVENT_FLAG_LBUTTON))
		prevPt = Point(-1,-1);

	else if(event == CV_EVENT_LBUTTONDOWN)
		prevPt= Point(x,y);

	else if(event == CV_EVENT_MOUSEMOVE && (flags & CV_EVENT_FLAG_LBUTTON))
	{
		Point pt(x,y);
		if(prevPt.x<0)
			prevPt = pt;
		line(g_maskImage,prevPt,pt,Scalar::all(255),5,8,0);
		line(g_srcImage,prevPt,pt,Scalar::all(255),5,8,0);
		prevPt = pt;
		imshow(WINDOW_NAME1,g_srcImage);
	}
}

int main(int argc,char**  argv)
{
	system("color A5");

	ShowHelpText();

	g_srcImage = imread("1.jpg",1);
	imshow(WINDOW_NAME1,g_srcImage);
	Mat srcImage,grayImage;
	g_srcImage.copyTo(srcImage);
	cvtColor(g_srcImage,g_maskImage,CV_BGR2GRAY);
	cvtColor(g_maskImage,grayImage,CV_GRAY2BGR);//灰度图转BGR3通道,但每通道的值都是原先单通道的值,所以也是显示灰色的
	g_maskImage = Scalar::all(0);//黑

	setMouseCallback(WINDOW_NAME1,on_Mouse,0);

	while(1)
	{
		int c = waitKey(0);
		if((char)c == 27)
			break;
		if((char)c == '2')
		{
			g_maskImage = Scalar::all(0);//黑
			srcImage.copyTo(g_srcImage);
			imshow("image",g_srcImage);
		}
		if((char)c == '1'||(char)c == ' ')
		{
			int i,j,compCount = 0;
			vector<vector<Point>> contours;//定义轮廓
			vector<Vec4i> hierarchy;//定义轮廓的层次

			findContours(g_maskImage,contours,hierarchy,RETR_CCOMP,CHAIN_APPROX_SIMPLE);
			if(contours.empty())
				continue;
			Mat maskImage(g_maskImage.size(),CV_32S);
			maskImage = Scalar::all(0);

			for(int index = 0;index >= 0;index = hierarchy[index][0],compCount++)
				drawContours(maskImage,contours,index,Scalar::all(compCount+1),-1,8,hierarchy,INT_MAX);
			if(compCount == 0)
				continue;
			vector<Vec3b> colorTab;
			for(i=0;i<compCount;i++)
			{
				int b = theRNG().uniform(0,255);
				int g = theRNG().uniform(0,255);
				int r = theRNG().uniform(0,255);
				colorTab.push_back(Vec3b((uchar)b,(uchar)g,(uchar)r));
			}
				//计算处理时间并输出到窗口中
			double dTime = (double)getTickCount();
			watershed(srcImage,maskImage);
			dTime = (double)getTickCount()-dTime;
			printf("\t处理时间=%gms\n",dTime*1000./getTickFrequency());
			//双层循环,将分水岭图像遍历存入watershedImage中
			Mat watershedImage(maskImage.size(),CV_8UC3);
			for(i=0;i<maskImage.rows;i++)
				for(j=0;j<maskImage.cols;j++)
				{
					int index = maskImage.at<int>(i,j);
					if(index == -1)
						watershedImage.at<Vec3b>(i,j) = Vec3b(255,255,255);
					else if(index<=0||index>compCount)
						watershedImage.at<Vec3b>(i,j) = Vec3b(0,0,0);
					else
						watershedImage.at<Vec3b>(i,j) = colorTab[index-1];	
				}
				//混合灰度图和分水岭效果图并显示最终的窗口
				watershedImage = watershedImage*0.5+grayImage*0.5;
				imshow(WINDOW_NAME2,watershedImage);								
		}	
	}
	waitKey();
	return 0;
}

基于OpenCV 的图像分割_第4张图片

你可能感兴趣的:(OpenCV)