参考:
1、http://blog.csdn.net/xingchenbingbuyu/article/details/68482838
2、http://dlib.net/
Anaconda 3——Python 3
Dlib
scikit-image
Dlib是基于现代C++的一个跨平台通用的框架,作者非常勤奋,一直在保持更新。Dlib内容涵盖机器学习、图像处理、数值算法、数据压缩等等,涉猎甚广。更重要的是,Dlib的文档非常完善,例子非常丰富。就像很多库一样,Dlib也提供了Python的接口,安装非常简单,用pip只需要一句即可:
pip install dlib
上面需要用到的scikit-image同样只是需要这么一句:
pip install scikit-image
注:如果用pip install dlib安装失败的话,那安装起来就比较麻烦了。错误提示很详细,按照错误提示一步步走就行了。
之所以用Dlib来实现人脸识别,是因为它已经替我们做好了绝大部分的工作,我们只需要去调用就行了。Dlib里面有人脸检测器,有训练好的人脸关键点检测器,也有训练好的人脸识别模型。
首先先通过文件树看一下今天需要用到的东西:
准备了六个候选人的图片放在candidate-faces
文件夹中,然后需要识别的人脸图片test.jpg。我们的工作就是要检测到test.jpg中的人脸,然后判断她到底是候选人中的谁。另外的girl-face-rec.py
是我们的python脚本。shape_predictor_68_face_landmarks.dat
是已经训练好的人脸关键点检测器。
dlib_face_recognition_resnet_model_v1.dat
是训练好的ResNet人脸识别模型。ResNet是何凯明在微软的时候提出的深度残差网络,获得了 ImageNet 2015 冠军,通过让网络对残差进行学习,在深度和精度上做到了比 CNN 更加强大。
shape_predictor_68_face_landmarks.dat
和dlib_face_recognition_resnet_model_v1.dat
都可以在这里找到。不能点击超链接的可以直接输入以下网址:http://dlib.net/files/。
然后准备几个人的人脸图片作为候选人脸,最好是正脸。放到candidate-faces文件夹中。(相当于 训练数据)
本文这里准备的是六张图片,如下:
她们分别是
然后准备四张需要识别的人脸图像,其实一张就够了,这里只是要看看不同的情况:(测试数据)
可以看到前两张和候选文件中的本人看起来还是差别不小的,第三张是候选人中的原图,第四张图片微微侧脸,而且右侧有阴影。
数据准备完毕,接下来就是代码了。识别的大致流程是这样的:
先对训练数据(事先提供的候选人文件中数据)进行特征提取等操作,再对测试数据(用于识别的数据)进行特征提取等,比较这些特征之间的欧式距离,判断是否是同一个人
以下是girl-face-rec.py
# -*- coding: UTF-8 -*-
import sys,os,dlib,glob,numpy
from skimage import io
if len(sys.argv) != 5:
print "请检查参数是否正确"
exit()
# 1.人脸关键点检测器
predictor_path = sys.argv[1]
# 2.人脸识别模型
face_rec_model_path = sys.argv[2]
# 3.候选人脸文件夹
faces_folder_path = sys.argv[3]
# 4.需识别的人脸
img_path = sys.argv[4]
# 1.加载正脸检测器
detector = dlib.get_frontal_face_detector()
# 2.加载人脸关键点检测器
sp = dlib.shape_predictor(predictor_path)
# 3. 加载人脸识别模型
facerec = dlib.face_recognition_model_v1(face_rec_model_path)
# win = dlib.image_window()
# 候选人脸描述子list
descriptors = []
# 对文件夹下的每一个人脸进行:
# 1.人脸检测
# 2.关键点检测
# 3.描述子提取
for f in glob.glob(os.path.join(faces_folder_path, "*.jpg")):
print("Processing file: {}".format(f))
img = io.imread(f)
#win.clear_overlay()
#win.set_image(img)
# 1.人脸检测
dets = detector(img, 1)
print("Number of faces detected: {}".format(len(dets)))
for k, d in enumerate(dets):
# 2.关键点检测
shape = sp(img, d)
# 画出人脸区域和和关键点
# win.clear_overlay()
# win.add_overlay(d)
# win.add_overlay(shape)
# 3.描述子提取,128D向量
face_descriptor = facerec.compute_face_descriptor(img, shape)
# 转换为numpy array
v = numpy.array(face_descriptor)
descriptors.append(v)
# 对需识别人脸进行同样处理
# 提取描述子,不再注释
img = io.imread(img_path)
dets = detector(img, 1)
dist = []
for k, d in enumerate(dets):
shape = sp(img, d)
face_descriptor = facerec.compute_face_descriptor(img, shape)
d_test = numpy.array(face_descriptor)
# 计算欧式距离
for i in descriptors:
dist_ = numpy.linalg.norm(i-d_test)
dist.append(dist_)
# 候选人名单
candidate = ['Unknown1','Unknown2','Shishi','Unknown4','Bingbing','Feifei']
# 候选人和距离组成一个dict
c_d = dict(zip(candidate,dist))
cd_sorted = sorted(c_d.iteritems(), key=lambda d:d[1])
print "\n The person is: ",cd_sorted[0][0]
dlib.hit_enter_to_continue()
运行如下命令
python girl-face-rec.py 1.dat 2.dat ./candidate-faecs test1.jpg
由于shape_predictor_68_face_landmarks.dat
和dlib_face_recognition_resnet_model_v1.dat
名字实在太长,所以我把它们重命名为1.dat和2.dat。
这里需要说明的是,前三张图输出结果都是非常理想的。但是第四张测试图片的输出结果是候选人4。对比一下两张图片可以很容易发现混淆的原因。
机器毕竟不是人,机器的智能还需要人来提升。
有兴趣的同学可以继续深入研究如何提升识别的准确率。比如每个人的候选图片用多张,然后对比和每个人距离的平均值之类的。全凭自己了。
# -*- coding: UTF-8 -*-
import sys,os,dlib,glob,numpy
from skimage import io
import cv2
#predictor_path="shape_predictor_68_face_landmarks.dat"
# 1.加载正脸检测器
detector = dlib.get_frontal_face_detector()
# 2.加载人脸关键点检测器
# sp = dlib.shape_predictor(predictor_path)
img = io.imread("nba.jpg")
# 1.人脸检测
dets = detector(img, 1)
print("Number of faces detected: {}".format(len(dets)))
"""
win = dlib.image_window()
for k, d in enumerate(dets):
# 2.关键点检测
shape = sp(img, d)
# 画出人脸区域和和关键点
win.clear_overlay()
win.add_overlay(d)
win.add_overlay(shape)
"""
for d in dets:
# print(d)
# print(type(d))
# 使用opencv在原图上画出人脸位置
left_top=(dlib.rectangle.left(d),dlib.rectangle.top(d))
right_bottom=(dlib.rectangle.right(d),dlib.rectangle.bottom(d))
cv2.rectangle(img,left_top,right_bottom,(0,255,0),2,cv2.LINE_AA)
cv2.imshow("img",cv2.cvtColor(img,cv2.COLOR_RGB2BGR)) # 转成BGR显示
cv2.waitKey(0)
cv2.destroyAllWindows()