Python+OpenCV图像处理之其他形态学操作

顶帽(Top Hat):

原图像与开操作之间的差值图像,突出原图像中比周围亮的区域

黑帽(Black Hat):

闭操作图像与原图像的差值图像, 突出原图像中比周围暗的区域

形态学梯度(Gradient):

基础梯度:基础梯度是用膨胀后的图像减去腐蚀后的图像得到差值图像,称为梯度图像也是opencv中支持的计算形态学梯度的方法,而此方法得到梯度有称为基本梯度。

内部梯度:是用原图像减去腐蚀之后的图像得到差值图像,称为图像的内部梯度。

外部梯度:图像膨胀之后再减去原来的图像得到的差值图像,称为图像的外部梯度。

顶帽python实现以及结果

def top_hat_demo(image):
    gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
    kernel = cv2.getStructuringElement(cv2.MORPH_RECT, (5, 5))
    dst = cv2.morphologyEx(gray, cv2.MORPH_TOPHAT, kernel)
    # 提升亮度
    cimage = np.array(gray.shape, np.uint8)
    cimage = 100
    dst = cv2.add(dst, cimage)
    cv2.imshow("top_hat_demo", dst)

 

Python+OpenCV图像处理之其他形态学操作_第1张图片

黑帽python实现以及结果

def black_hat_demo(image):
    gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
    kernel = cv2.getStructuringElement(cv2.MORPH_RECT, (5, 5))
    dst = cv2.morphologyEx(gray, cv2.MORPH_BLACKHAT, kernel)
    # 提升亮度
    cimage = np.array(gray.shape, np.uint8)
    cimage = 100
    dst = cv2.add(dst, cimage)
    cv2.imshow("black_hat_demo", dst)

 

Python+OpenCV图像处理之其他形态学操作_第2张图片

 二值图像的顶帽与黑帽操作

def threshold_top_hat_demo(image):  # 二值图像顶帽操作
    gray = cv2.cvtColor(image, cv2.COLOR_BGRA2GRAY)
    ret, thresh = cv2.threshold(gray, 0, 255, cv2.THRESH_BINARY | cv2.THRESH_OTSU)
    kernel = cv2.getStructuringElement(cv2.MORPH_RECT, (5, 5))
    dst = cv2.morphologyEx(thresh, cv2.MORPH_TOPHAT, kernel)
    cv2.imshow("dst", dst)


def threshold_black_hat_demo(image):  # 二值图像黑帽操作
    gray = cv2.cvtColor(image, cv2.COLOR_BGRA2GRAY)
    ret, thresh = cv2.threshold(gray, 0, 255, cv2.THRESH_BINARY | cv2.THRESH_OTSU)
    kernel = cv2.getStructuringElement(cv2.MORPH_RECT, (5, 5))
    dst = cv2.morphologyEx(thresh, cv2.MORPH_BLACKHAT, kernel)
    cv2.imshow("dst", dst)

形态学梯度操作

def gradient1_demo(image):
    cv2.imshow("image", image)
    gray = cv2.cvtColor(image, cv2.COLOR_BGRA2GRAY)
    ret, thresh = cv2.threshold(gray, 0, 255, cv2.THRESH_BINARY | cv2.THRESH_OTSU)
    kernel = cv2.getStructuringElement(cv2.MORPH_RECT, (3, 3))
    dst = cv2.morphologyEx(thresh, cv2.MORPH_GRADIENT, kernel)  # 基本梯度
    cv2.imshow("dst", dst)


def gradients2_demo(image):
    cv2.imshow("image", image)
    kernel = cv2.getStructuringElement(cv2.MORPH_RECT, (5, 5))
    dm = cv2.dilate(image, kernel)
    em = cv2.erode(image, kernel)
    dst1 = cv2.subtract(image, em)  # 内部梯度
    dst2 = cv2.subtract(dm, image)  # 外部梯度
    cv2.imshow("internal", dst1)
    cv2.imshow("external", dst2)

内部梯度,外部梯度结果

Python+OpenCV图像处理之其他形态学操作_第3张图片

 

转载于:https://www.cnblogs.com/qianxia/p/11106408.html

你可能感兴趣的:(Python+OpenCV图像处理之其他形态学操作)