从emu8086软件的文档中看到的,觉得不错,所以拷贝出来了!
Complete 8086 instruction set
Quick reference:
AAA AAD AAM AAS ADC ADD AND CALL CBW CLC CLD CLI CMC CMP |
CMPSB CMPSW CWD DAA DAS DEC DIV HLT IDIV IMUL IN INC INT INTO IRET JA |
JAE JB JBE JC JCXZ JE JG JGE JL JLE JMP JNA JNAE JNB |
JNBE JNC JNE JNG JNGE JNL JNLE JNO JNP JNS JNZ JO JP JPE |
JPO JS JZ LAHF LDS LEA LES LODSB LODSW LOOP LOOPE LOOPNE LOOPNZ LOOPZ |
MOV MOVSB MOVSW MUL NEG NOP NOT OR OUT POP POPA POPF PUSH PUSHA PUSHF RCL |
RCR REP REPE REPNE REPNZ REPZ RET RETF ROL ROR SAHF SAL SAR SBB |
SCASB SCASW SHL SHR STC STD STI STOSB STOSW SUB TEST XCHG XLATB XOR |
Operand types:
REG: AX, BX, CX, DX, AH, AL, BL, BH, CH, CL, DH, DL, DI, SI, BP, SP.
SREG: DS, ES, SS, and only as second operand: CS.
memory: [BX], [BX+SI+7], variable, etc...(see Memory Access).
immediate: 5, -24, 3Fh, 10001101b, etc...
Notes:
- When two operands are required for an instruction they are separated by comma. For example:
REG, memory - When there are two operands, both operands must have the same size (except shift and rotate instructions). For example:
AL, DL
DX, AX
m1 DB ?
AL, m1
m2 DW ?
AX, m2 - Some instructions allow several operand combinations. For example:
memory, immediate
REG, immediate
memory, REG
REG, SREG - Some examples contain macros, so it is advisable to use Shift + F8 hot key to Step Over (to make macro code execute at maximum speed set step delay to zero), otherwise emulator will step through each instruction of a macro. Here is an example that uses PRINTN macro:
include 'emu8086.inc' ORG 100h MOV AL, 1 MOV BL, 2 PRINTN 'Hello World!' ; macro. MOV CL, 3 PRINTN 'Welcome!' ; macro. RET
These marks are used to show the state of the flags:
1 - instruction sets this flag to 1.
0 - instruction sets this flag to 0.
r - flag value depends on result of the instruction.
? - flag value is undefined (maybe 1 or 0).
Some instructions generate exactly the same machine code, so disassembler may have a problem decoding to your original code. This is especially important for Conditional Jump instructions (see "Program Flow Control" in Tutorials for more information).
Instructions in alphabetical order:
Instruction | Operands | Description | ||||||||||||||
AAA | No operands | ASCII Adjust after Addition. Corrects result in AH and AL after addition when working with BCD values. It works according to the following Algorithm: if low nibble of AL > 9 or AF = 1 then:
clear the high nibble of AL. Example: MOV AX, 15 ; AH = 00, AL = 0Fh
AAA ; AH = 01, AL = 05
RET
|
||||||||||||||
AAD | No operands | ASCII Adjust before Division. Prepares two BCD values for division. Algorithm:
Example: MOV AX, 0105h ; AH = 01, AL = 05
AAD ; AH = 00, AL = 0Fh (15)
RET
|
||||||||||||||
AAM | No operands | ASCII Adjust after Multiplication. Corrects the result of multiplication of two BCD values. Algorithm:
Example: MOV AL, 15 ; AL = 0Fh
AAM ; AH = 01, AL = 05
RET
|
||||||||||||||
AAS | No operands | ASCII Adjust after Subtraction. Corrects result in AH and AL after subtraction when working with BCD values. Algorithm: if low nibble of AL > 9 or AF = 1 then:
clear the high nibble of AL. Example: MOV AX, 02FFh ; AH = 02, AL = 0FFh
AAS ; AH = 01, AL = 09
RET
|
||||||||||||||
ADC | REG, memory memory, REG REG, REG memory, immediate REG, immediate |
Add with Carry. Algorithm: operand1 = operand1 + operand2 + CF Example: STC ; set CF = 1
MOV AL, 5 ; AL = 5
ADC AL, 1 ; AL = 7
RET
|
||||||||||||||
ADD | REG, memory memory, REG REG, REG memory, immediate REG, immediate |
Add. Algorithm: operand1 = operand1 + operand2 Example: MOV AL, 5 ; AL = 5
ADD AL, -3 ; AL = 2
RET
|
||||||||||||||
AND | REG, memory memory, REG REG, REG memory, immediate REG, immediate |
Logical AND between all bits of two operands. Result is stored in operand1. These rules apply: 1 AND 1 = 1 1 AND 0 = 0 0 AND 1 = 0 0 AND 0 = 0 Example: MOV AL, 'a' ; AL = 01100001b
AND AL, 11011111b ; AL = 01000001b ('A')
RET
|
||||||||||||||
CALL | procedure name label 4-byte address |
Transfers control to procedure. Return address (IP) is pushed to stack. 4-byte address may be entered in this form: 1234h:5678h, first value is a segment second value is an offset. If it's a far call, then code segment is pushed to stack as well. Example:
ORG 100h ; for COM file.
CALL p1
ADD AX, 1
RET ; return to OS.
p1 PROC ; procedure declaration.
MOV AX, 1234h
RET ; return to caller.
p1 ENDP
|
||||||||||||||
CBW | No operands | Convert byte into word. Algorithm: if high bit of AL = 1 then:
else
Example: MOV AX, 0 ; AH = 0, AL = 0
MOV AL, -5 ; AX = 000FBh (251)
CBW ; AX = 0FFFBh (-5)
RET
|
||||||||||||||
CLC | No operands | Clear Carry flag. Algorithm: CF = 0
|
||||||||||||||
CLD | No operands | Clear Direction flag. SI and DI will be incremented by chain instructions: CMPSB, CMPSW, LODSB, LODSW, MOVSB, MOVSW, STOSB, STOSW. Algorithm: DF = 0
|
||||||||||||||
CLI | No operands | Clear Interrupt enable flag. This disables hardware interrupts. Algorithm: IF = 0
|
||||||||||||||
CMC | No operands | Complement Carry flag. Inverts value of CF. Algorithm: if CF = 1 then CF = 0 if CF = 0 then CF = 1
|
||||||||||||||
CMP | REG, memory memory, REG REG, REG memory, immediate REG, immediate |
Compare. Algorithm: operand1 - operand2 result is not stored anywhere, flags are set (OF, SF, ZF, AF, PF, CF) according to result. Example: MOV AL, 5
MOV BL, 5
CMP AL, BL ; AL = 5, ZF = 1 (so equal!)
RET
|
||||||||||||||
CMPSB | No operands | Compare bytes: ES:[DI] from DS:[SI]. Algorithm:
open cmpsb.asm from c:\emu8086\examples
|
||||||||||||||
CMPSW | No operands | Compare words: ES:[DI] from DS:[SI]. Algorithm:
open cmpsw.asm from c:\emu8086\examples
|
||||||||||||||
CWD | No operands | Convert Word to Double word. Algorithm: if high bit of AX = 1 then:
else
Example: MOV DX, 0 ; DX = 0
MOV AX, 0 ; AX = 0
MOV AX, -5 ; DX AX = 00000h:0FFFBh
CWD ; DX AX = 0FFFFh:0FFFBh
RET
|
||||||||||||||
DAA | No operands | Decimal adjust After Addition. Corrects the result of addition of two packed BCD values. Algorithm: if low nibble of AL > 9 or AF = 1 then:
Example: MOV AL, 0Fh ; AL = 0Fh (15)
DAA ; AL = 15h
RET
|
||||||||||||||
DAS | No operands | Decimal adjust After Subtraction. Corrects the result of subtraction of two packed BCD values. Algorithm: if low nibble of AL > 9 or AF = 1 then:
Example: MOV AL, 0FFh ; AL = 0FFh (-1)
DAS ; AL = 99h, CF = 1
RET
|
||||||||||||||
DEC | REG memory |
Decrement. Algorithm: operand = operand - 1 Example: MOV AL, 255 ; AL = 0FFh (255 or -1)
DEC AL ; AL = 0FEh (254 or -2)
RET
|
||||||||||||||
DIV | REG memory |
Unsigned divide. Algorithm: when operand is a byte: when operand is a word:Example: MOV AX, 203 ; AX = 00CBh
MOV BL, 4
DIV BL ; AL = 50 (32h), AH = 3
RET
|
||||||||||||||
HLT | No operands | Halt the System. Example: MOV AX, 5
HLT
|
||||||||||||||
IDIV | REG memory |
Signed divide. Algorithm: when operand is a byte: when operand is a word:Example: MOV AX, -203 ; AX = 0FF35h
MOV BL, 4
IDIV BL ; AL = -50 (0CEh), AH = -3 (0FDh)
RET
|
||||||||||||||
IMUL | REG memory |
Signed multiply. Algorithm: when operand is a byte: when operand is a word:Example: MOV AL, -2
MOV BL, -4
IMUL BL ; AX = 8
RET
|
||||||||||||||
IN | AL, im.byte AL, DX AX, im.byte AX, DX |
Input from port into AL or AX. Second operand is a port number. If required to access port number over 255 - DX register should be used. Example: IN AX, 4 ; get status of traffic lights.
IN AL, 7 ; get status of stepper-motor.
|
||||||||||||||
INC | REG memory |
Increment. Algorithm: operand = operand + 1 Example: MOV AL, 4
INC AL ; AL = 5
RET
|
||||||||||||||
INT | immediate byte | Interrupt numbered by immediate byte (0..255). Algorithm:
Example: MOV AH, 0Eh ; teletype.
MOV AL, 'A'
INT 10h ; BIOS interrupt.
RET
|
||||||||||||||
INTO | No operands | Interrupt 4 if Overflow flag is 1. Algorithm: if OF = 1 then INT 4 Example: ; -5 - 127 = -132 (not in -128..127)
; the result of SUB is wrong (124),
; so OF = 1 is set:
MOV AL, -5
SUB AL, 127 ; AL = 7Ch (124)
INTO ; process error.
RET |
||||||||||||||
IRET | No operands | Interrupt Return. Algorithm:
|
||||||||||||||
JA | label | Short Jump if first operand is Above second operand (as set by CMP instruction). Unsigned. Algorithm:
include 'emu8086.inc'
ORG 100h
MOV AL, 250
CMP AL, 5
JA label1
PRINT 'AL is not above 5'
JMP exit
label1:
PRINT 'AL is above 5'
exit:
RET
|
||||||||||||||
JAE | label | Short Jump if first operand is Above or Equal to second operand (as set by CMP instruction). Unsigned. Algorithm:
include 'emu8086.inc'
ORG 100h
MOV AL, 5
CMP AL, 5
JAE label1
PRINT 'AL is not above or equal to 5'
JMP exit
label1:
PRINT 'AL is above or equal to 5'
exit:
RET
|
||||||||||||||
JB | label | Short Jump if first operand is Below second operand (as set by CMP instruction). Unsigned. Algorithm:
include 'emu8086.inc'
ORG 100h
MOV AL, 1
CMP AL, 5
JB label1
PRINT 'AL is not below 5'
JMP exit
label1:
PRINT 'AL is below 5'
exit:
RET
|
||||||||||||||
JBE | label | Short Jump if first operand is Below or Equal to second operand (as set by CMP instruction). Unsigned. Algorithm:
include 'emu8086.inc'
ORG 100h
MOV AL, 5
CMP AL, 5
JBE label1
PRINT 'AL is not below or equal to 5'
JMP exit
label1:
PRINT 'AL is below or equal to 5'
exit:
RET
|
||||||||||||||
JC | label | Short Jump if Carry flag is set to 1. Algorithm:
include 'emu8086.inc'
ORG 100h
MOV AL, 255
ADD AL, 1
JC label1
PRINT 'no carry.'
JMP exit
label1:
PRINT 'has carry.'
exit:
RET
|
||||||||||||||
JCXZ | label | Short Jump if CX register is 0. Algorithm:
include 'emu8086.inc'
ORG 100h
MOV CX, 0
JCXZ label1
PRINT 'CX is not zero.'
JMP exit
label1:
PRINT 'CX is zero.'
exit:
RET
|
||||||||||||||
JE | label | Short Jump if first operand is Equal to second operand (as set by CMP instruction). Signed/Unsigned. Algorithm:
include 'emu8086.inc'
ORG 100h
MOV AL, 5
CMP AL, 5
JE label1
PRINT 'AL is not equal to 5.'
JMP exit
label1:
PRINT 'AL is equal to 5.'
exit:
RET
|
||||||||||||||
JG | label | Short Jump if first operand is Greater then second operand (as set by CMP instruction). Signed. Algorithm:
include 'emu8086.inc'
ORG 100h
MOV AL, 5
CMP AL, -5
JG label1
PRINT 'AL is not greater -5.'
JMP exit
label1:
PRINT 'AL is greater -5.'
exit:
RET
|
||||||||||||||
JGE | label | Short Jump if first operand is Greater or Equal to second operand (as set by CMP instruction). Signed. Algorithm:
include 'emu8086.inc'
ORG 100h
MOV AL, 2
CMP AL, -5
JGE label1
PRINT 'AL < -5'
JMP exit
label1:
PRINT 'AL >= -5'
exit:
RET
|
||||||||||||||
JL | label | Short Jump if first operand is Less then second operand (as set by CMP instruction). Signed. Algorithm:
include 'emu8086.inc'
ORG 100h
MOV AL, -2
CMP AL, 5
JL label1
PRINT 'AL >= 5.'
JMP exit
label1:
PRINT 'AL < 5.'
exit:
RET
|
||||||||||||||
JLE | label | Short Jump if first operand is Less or Equal to second operand (as set by CMP instruction). Signed. Algorithm:
include 'emu8086.inc'
ORG 100h
MOV AL, -2
CMP AL, 5
JLE label1
PRINT 'AL > 5.'
JMP exit
label1:
PRINT 'AL <= 5.'
exit:
RET
|
||||||||||||||
JMP | label 4-byte address |
Unconditional Jump. Transfers control to another part of the program. 4-byte address may be entered in this form: 1234h:5678h, first value is a segment second value is an offset. Algorithm:
include 'emu8086.inc'
ORG 100h
MOV AL, 5
JMP label1 ; jump over 2 lines!
PRINT 'Not Jumped!'
MOV AL, 0
label1:
PRINT 'Got Here!'
RET
|
||||||||||||||
JNA | label | Short Jump if first operand is Not Above second operand (as set by CMP instruction). Unsigned. Algorithm:
include 'emu8086.inc'
ORG 100h
MOV AL, 2
CMP AL, 5
JNA label1
PRINT 'AL is above 5.'
JMP exit
label1:
PRINT 'AL is not above 5.'
exit:
RET
|
||||||||||||||
JNAE | label | Short Jump if first operand is Not Above and Not Equal to second operand (as set by CMP instruction). Unsigned. Algorithm:
include 'emu8086.inc'
ORG 100h
MOV AL, 2
CMP AL, 5
JNAE label1
PRINT 'AL >= 5.'
JMP exit
label1:
PRINT 'AL < 5.'
exit:
RET
|
||||||||||||||
JNB | label | Short Jump if first operand is Not Below second operand (as set by CMP instruction). Unsigned. Algorithm:
include 'emu8086.inc'
ORG 100h
MOV AL, 7
CMP AL, 5
JNB label1
PRINT 'AL < 5.'
JMP exit
label1:
PRINT 'AL >= 5.'
exit:
RET
|
||||||||||||||
JNBE | label | Short Jump if first operand is Not Below and Not Equal to second operand (as set by CMP instruction). Unsigned. Algorithm:
include 'emu8086.inc'
ORG 100h
MOV AL, 7
CMP AL, 5
JNBE label1
PRINT 'AL <= 5.'
JMP exit
label1:
PRINT 'AL > 5.'
exit:
RET
|
||||||||||||||
JNC | label | Short Jump if Carry flag is set to 0. Algorithm:
include 'emu8086.inc'
ORG 100h
MOV AL, 2
ADD AL, 3
JNC label1
PRINT 'has carry.'
JMP exit
label1:
PRINT 'no carry.'
exit:
RET
|
||||||||||||||
JNE | label | Short Jump if first operand is Not Equal to second operand (as set by CMP instruction). Signed/Unsigned. Algorithm:
include 'emu8086.inc'
ORG 100h
MOV AL, 2
CMP AL, 3
JNE label1
PRINT 'AL = 3.'
JMP exit
label1:
PRINT 'Al <> 3.'
exit:
RET
|
||||||||||||||
JNG | label | Short Jump if first operand is Not Greater then second operand (as set by CMP instruction). Signed. Algorithm:
include 'emu8086.inc'
ORG 100h
MOV AL, 2
CMP AL, 3
JNG label1
PRINT 'AL > 3.'
JMP exit
label1:
PRINT 'Al <= 3.'
exit:
RET
|
||||||||||||||
JNGE | label | Short Jump if first operand is Not Greater and Not Equal to second operand (as set by CMP instruction). Signed. Algorithm:
include 'emu8086.inc'
ORG 100h
MOV AL, 2
CMP AL, 3
JNGE label1
PRINT 'AL >= 3.'
JMP exit
label1:
PRINT 'Al < 3.'
exit:
RET
|
||||||||||||||
JNL | label | Short Jump if first operand is Not Less then second operand (as set by CMP instruction). Signed. Algorithm:
include 'emu8086.inc'
ORG 100h
MOV AL, 2
CMP AL, -3
JNL label1
PRINT 'AL < -3.'
JMP exit
label1:
PRINT 'Al >= -3.'
exit:
RET
|
||||||||||||||
JNLE | label | Short Jump if first operand is Not Less and Not Equal to second operand (as set by CMP instruction). Signed. Algorithm:
include 'emu8086.inc'
ORG 100h
MOV AL, 2
CMP AL, -3
JNLE label1
PRINT 'AL <= -3.'
JMP exit
label1:
PRINT 'Al > -3.'
exit:
RET
|
||||||||||||||
JNO | label | Short Jump if Not Overflow. Algorithm:
; -5 - 2 = -7 (inside -128..127)
; the result of SUB is correct,
; so OF = 0:
include 'emu8086.inc'
ORG 100h
MOV AL, -5
SUB AL, 2 ; AL = 0F9h (-7)
JNO label1
PRINT 'overflow!'
JMP exit
label1:
PRINT 'no overflow.'
exit:
RET
|
||||||||||||||
JNP | label | Short Jump if No Parity (odd). Only 8 low bits of result are checked. Set by CMP, SUB, ADD, TEST, AND, OR, XOR instructions. Algorithm:
include 'emu8086.inc'
ORG 100h
MOV AL, 00000111b ; AL = 7
OR AL, 0 ; just set flags.
JNP label1
PRINT 'parity even.'
JMP exit
label1:
PRINT 'parity odd.'
exit:
RET
|
||||||||||||||
JNS | label | Short Jump if Not Signed (if positive). Set by CMP, SUB, ADD, TEST, AND, OR, XOR instructions. Algorithm:
include 'emu8086.inc'
ORG 100h
MOV AL, 00000111b ; AL = 7
OR AL, 0 ; just set flags.
JNS label1
PRINT 'signed.'
JMP exit
label1:
PRINT 'not signed.'
exit:
RET
|
||||||||||||||
JNZ | label | Short Jump if Not Zero (not equal). Set by CMP, SUB, ADD, TEST, AND, OR, XOR instructions. Algorithm:
include 'emu8086.inc'
ORG 100h
MOV AL, 00000111b ; AL = 7
OR AL, 0 ; just set flags.
JNZ label1
PRINT 'zero.'
JMP exit
label1:
PRINT 'not zero.'
exit:
RET
|
||||||||||||||
JO | label | Short Jump if Overflow. Algorithm:
; -5 - 127 = -132 (not in -128..127)
; the result of SUB is wrong (124),
; so OF = 1 is set:
include 'emu8086.inc'
org 100h
MOV AL, -5
SUB AL, 127 ; AL = 7Ch (124)
JO label1
PRINT 'no overflow.'
JMP exit
label1:
PRINT 'overflow!'
exit:
RET
|
||||||||||||||
JP | label | Short Jump if Parity (even). Only 8 low bits of result are checked. Set by CMP, SUB, ADD, TEST, AND, OR, XOR instructions. Algorithm:
include 'emu8086.inc'
ORG 100h
MOV AL, 00000101b ; AL = 5
OR AL, 0 ; just set flags.
JP label1
PRINT 'parity odd.'
JMP exit
label1:
PRINT 'parity even.'
exit:
RET
|
||||||||||||||
JPE | label | Short Jump if Parity Even. Only 8 low bits of result are checked. Set by CMP, SUB, ADD, TEST, AND, OR, XOR instructions. Algorithm:
include 'emu8086.inc'
ORG 100h
MOV AL, 00000101b ; AL = 5
OR AL, 0 ; just set flags.
JPE label1
PRINT 'parity odd.'
JMP exit
label1:
PRINT 'parity even.'
exit:
RET
|
||||||||||||||
JPO | label | Short Jump if Parity Odd. Only 8 low bits of result are checked. Set by CMP, SUB, ADD, TEST, AND, OR, XOR instructions. Algorithm:
include 'emu8086.inc'
ORG 100h
MOV AL, 00000111b ; AL = 7
OR AL, 0 ; just set flags.
JPO label1
PRINT 'parity even.'
JMP exit
label1:
PRINT 'parity odd.'
exit:
RET
|
||||||||||||||
JS | label | Short Jump if Signed (if negative). Set by CMP, SUB, ADD, TEST, AND, OR, XOR instructions. Algorithm:
include 'emu8086.inc'
ORG 100h
MOV AL, 10000000b ; AL = -128
OR AL, 0 ; just set flags.
JS label1
PRINT 'not signed.'
JMP exit
label1:
PRINT 'signed.'
exit:
RET
|
||||||||||||||
JZ | label | Short Jump if Zero (equal). Set by CMP, SUB, ADD, TEST, AND, OR, XOR instructions. Algorithm:
include 'emu8086.inc'
ORG 100h
MOV AL, 5
CMP AL, 5
JZ label1
PRINT 'AL is not equal to 5.'
JMP exit
label1:
PRINT 'AL is equal to 5.'
exit:
RET
|
||||||||||||||
LAHF | No operands | Load AH from 8 low bits of Flags register. Algorithm:
AH bit: 7 6 5 4 3 2 1 0
[SF] [ZF] [0] [AF] [0] [PF] [1] [CF]
bits 1, 3, 5 are reserved.
|
||||||||||||||
LDS | REG, memory | Load memory double word into word register and DS. Algorithm:
Example:
ORG 100h
LDS AX, m
RET
m DW 1234h
DW 5678h
END
AX is set to 1234h, DS is set to 5678h.
|
||||||||||||||
LEA | REG, memory | Load Effective Address. Algorithm:
Example:
MOV BX, 35h
MOV DI, 12h
LEA SI, [BX+DI] ; SI = 35h + 12h = 47h
Note: The integrated 8086 assembler automatically replaces LEA with a more efficient MOV where possible. For example:
org 100h
LEA AX, m ; AX = offset of m
RET
m dw 1234h
END
|
||||||||||||||
LES | REG, memory | Load memory double word into word register and ES. Algorithm:
Example:
ORG 100h
LES AX, m
RET
m DW 1234h
DW 5678h
END
AX is set to 1234h, ES is set to 5678h.
|
||||||||||||||
LODSB | No operands | Load byte at DS:[SI] into AL. Update SI. Algorithm:
ORG 100h
LEA SI, a1
MOV CX, 5
MOV AH, 0Eh
m: LODSB
INT 10h
LOOP m
RET
a1 DB 'H', 'e', 'l', 'l', 'o'
|
||||||||||||||
LODSW | No operands | Load word at DS:[SI] into AX. Update SI. Algorithm:
ORG 100h
LEA SI, a1
MOV CX, 5
REP LODSW ; finally there will be 555h in AX.
RET
a1 dw 111h, 222h, 333h, 444h, 555h
|
||||||||||||||
LOOP | label | Decrease CX, jump to label if CX not zero. Algorithm:
include 'emu8086.inc'
ORG 100h
MOV CX, 5
label1:
PRINTN 'loop!'
LOOP label1
RET
|
||||||||||||||
LOOPE | label | Decrease CX, jump to label if CX not zero and Equal (ZF = 1). Algorithm:
; Loop until result fits into AL alone,
; or 5 times. The result will be over 255
; on third loop (100+100+100),
; so loop will exit.
include 'emu8086.inc'
ORG 100h
MOV AX, 0
MOV CX, 5
label1:
PUTC '*'
ADD AX, 100
CMP AH, 0
LOOPE label1
RET
|
||||||||||||||
LOOPNE | label | Decrease CX, jump to label if CX not zero and Not Equal (ZF = 0). Algorithm:
; Loop until '7' is found,
; or 5 times.
include 'emu8086.inc'
ORG 100h
MOV SI, 0
MOV CX, 5
label1:
PUTC '*'
MOV AL, v1[SI]
INC SI ; next byte (SI=SI+1).
CMP AL, 7
LOOPNE label1
RET
v1 db 9, 8, 7, 6, 5
|
||||||||||||||
LOOPNZ | label | Decrease CX, jump to label if CX not zero and ZF = 0. Algorithm:
; Loop until '7' is found,
; or 5 times.
include 'emu8086.inc'
ORG 100h
MOV SI, 0
MOV CX, 5
label1:
PUTC '*'
MOV AL, v1[SI]
INC SI ; next byte (SI=SI+1).
CMP AL, 7
LOOPNZ label1
RET
v1 db 9, 8, 7, 6, 5
|
||||||||||||||
LOOPZ | label | Decrease CX, jump to label if CX not zero and ZF = 1. Algorithm:
; Loop until result fits into AL alone,
; or 5 times. The result will be over 255
; on third loop (100+100+100),
; so loop will exit.
include 'emu8086.inc'
ORG 100h
MOV AX, 0
MOV CX, 5
label1:
PUTC '*'
ADD AX, 100
CMP AH, 0
LOOPZ label1
RET
|
||||||||||||||
MOV | REG, memory memory, REG REG, REG memory, immediate REG, immediate SREG, memory memory, SREG REG, SREG SREG, REG |
Copy operand2 to operand1. The MOV instruction cannot:
Algorithm: operand1 = operand2Example:
ORG 100h
MOV AX, 0B800h ; set AX = B800h (VGA memory).
MOV DS, AX ; copy value of AX to DS.
MOV CL, 'A' ; CL = 41h (ASCII code).
MOV CH, 01011111b ; CL = color attribute.
MOV BX, 15Eh ; BX = position on screen.
MOV [BX], CX ; w.[0B800h:015Eh] = CX.
RET ; returns to operating system.
|
||||||||||||||
MOVSB | No operands | Copy byte at DS:[SI] to ES:[DI]. Update SI and DI. Algorithm:
ORG 100h
CLD
LEA SI, a1
LEA DI, a2
MOV CX, 5
REP MOVSB
RET
a1 DB 1,2,3,4,5
a2 DB 5 DUP(0)
|
||||||||||||||
MOVSW | No operands | Copy word at DS:[SI] to ES:[DI]. Update SI and DI. Algorithm:
ORG 100h
CLD
LEA SI, a1
LEA DI, a2
MOV CX, 5
REP MOVSW
RET
a1 DW 1,2,3,4,5
a2 DW 5 DUP(0)
|
||||||||||||||
MUL | REG memory |
Unsigned multiply. Algorithm: when operand is a byte: when operand is a word:Example: MOV AL, 200 ; AL = 0C8h
MOV BL, 4
MUL BL ; AX = 0320h (800)
RET
|
||||||||||||||
NEG | REG memory |
Negate. Makes operand negative (two's complement). Algorithm:
MOV AL, 5 ; AL = 05h
NEG AL ; AL = 0FBh (-5)
NEG AL ; AL = 05h (5)
RET
|
||||||||||||||
NOP | No operands | No Operation. Algorithm:
; do nothing, 3 times:
NOP
NOP
NOP
RET
|
||||||||||||||
NOT | REG memory |
Invert each bit of the operand. Algorithm:
MOV AL, 00011011b
NOT AL ; AL = 11100100b
RET
|
||||||||||||||
OR | REG, memory memory, REG REG, REG memory, immediate REG, immediate |
Logical OR between all bits of two operands. Result is stored in first operand. These rules apply: 1 OR 1 = 1 1 OR 0 = 1 0 OR 1 = 1 0 OR 0 = 0 Example: MOV AL, 'A' ; AL = 01000001b
OR AL, 00100000b ; AL = 01100001b ('a')
RET
|
||||||||||||||
OUT | im.byte, AL im.byte, AX DX, AL DX, AX |
Output from AL or AX to port. First operand is a port number. If required to access port number over 255 - DX register should be used. Example: MOV AX, 0FFFh ; Turn on all
OUT 4, AX ; traffic lights.
MOV AL, 100b ; Turn on the third
OUT 7, AL ; magnet of the stepper-motor.
|
||||||||||||||
POP | REG SREG memory |
Get 16 bit value from the stack. Algorithm:
Example: MOV AX, 1234h
PUSH AX
POP DX ; DX = 1234h
RET
|
||||||||||||||
POPA | No operands | Pop all general purpose registers DI, SI, BP, SP, BX, DX, CX, AX from the stack. SP value is ignored, it is Popped but not set to SP register). Note: this instruction works only on 80186 CPU and later! Algorithm:
|
||||||||||||||
POPF | No operands | Get flags register from the stack. Algorithm:
|
||||||||||||||
PUSH | REG SREG memory immediate |
Store 16 bit value in the stack. Note: PUSH immediate works only on 80186 CPU and later! Algorithm:
Example: MOV AX, 1234h
PUSH AX
POP DX ; DX = 1234h
RET
|
||||||||||||||
PUSHA | No operands | Push all general purpose registers AX, CX, DX, BX, SP, BP, SI, DI in the stack. Original value of SP register (before PUSHA) is used. Note: this instruction works only on 80186 CPU and later! Algorithm:
|
||||||||||||||
PUSHF | No operands | Store flags register in the stack. Algorithm:
|
||||||||||||||
RCL | memory, immediate REG, immediate memory, CL REG, CL |
Rotate operand1 left through Carry Flag. The number of rotates is set by operand2. When immediate is greater then 1, assembler generates several RCL xx, 1 instructions because 8086 has machine code only for this instruction (the same principle works for all other shift/rotate instructions). Algorithm:
Example: STC ; set carry (CF=1).
MOV AL, 1Ch ; AL = 00011100b
RCL AL, 1 ; AL = 00111001b, CF=0.
RET
|
||||||||||||||
RCR | memory, immediate REG, immediate memory, CL REG, CL |
Rotate operand1 right through Carry Flag. The number of rotates is set by operand2. Algorithm:
Example: STC ; set carry (CF=1).
MOV AL, 1Ch ; AL = 00011100b
RCR AL, 1 ; AL = 10001110b, CF=0.
RET
|
||||||||||||||
REP | chain instruction |
Repeat following MOVSB, MOVSW, LODSB, LODSW, STOSB, STOSW instructions CX times. Algorithm: check_cx: if CX <> 0 then
|
||||||||||||||
REPE | chain instruction |
Repeat following CMPSB, CMPSW, SCASB, SCASW instructions while ZF = 1 (result is Equal), maximum CX times. Algorithm: check_cx: if CX <> 0 then
open cmpsb.asm from c:\emu8086\examples
|
||||||||||||||
REPNE | chain instruction |
Repeat following CMPSB, CMPSW, SCASB, SCASW instructions while ZF = 0 (result is Not Equal), maximum CX times. Algorithm: check_cx: if CX <> 0 then
|
||||||||||||||
REPNZ | chain instruction |
Repeat following CMPSB, CMPSW, SCASB, SCASW instructions while ZF = 0 (result is Not Zero), maximum CX times. Algorithm: check_cx: if CX <> 0 then
|
||||||||||||||
REPZ | chain instruction |
Repeat following CMPSB, CMPSW, SCASB, SCASW instructions while ZF = 1 (result is Zero), maximum CX times. Algorithm: check_cx: if CX <> 0 then
|
||||||||||||||
RET | No operands or even immediate |
Return from near procedure. Algorithm:
ORG 100h ; for COM file.
CALL p1
ADD AX, 1
RET ; return to OS.
p1 PROC ; procedure declaration.
MOV AX, 1234h
RET ; return to caller.
p1 ENDP
|
||||||||||||||
RETF | No operands or even immediate |
Return from Far procedure. Algorithm:
|
||||||||||||||
ROL | memory, immediate REG, immediate memory, CL REG, CL |
Rotate operand1 left. The number of rotates is set by operand2. Algorithm:
MOV AL, 1Ch ; AL = 00011100b
ROL AL, 1 ; AL = 00111000b, CF=0.
RET
|
||||||||||||||
ROR | memory, immediate REG, immediate memory, CL REG, CL |
Rotate operand1 right. The number of rotates is set by operand2. Algorithm:
MOV AL, 1Ch ; AL = 00011100b
ROR AL, 1 ; AL = 00001110b, CF=0.
RET
|
||||||||||||||
SAHF | No operands | Store AH register into low 8 bits of Flags register. Algorithm:
AH bit: 7 6 5 4 3 2 1 0
[SF] [ZF] [0] [AF] [0] [PF] [1] [CF]
bits 1, 3, 5 are reserved.
|
||||||||||||||
SAL | memory, immediate REG, immediate memory, CL REG, CL |
Shift Arithmetic operand1 Left. The number of shifts is set by operand2. Algorithm:
MOV AL, 0E0h ; AL = 11100000b
SAL AL, 1 ; AL = 11000000b, CF=1.
RET
|
||||||||||||||
SAR | memory, immediate REG, immediate memory, CL REG, CL |
Shift Arithmetic operand1 Right. The number of shifts is set by operand2. Algorithm:
MOV AL, 0E0h ; AL = 11100000b
SAR AL, 1 ; AL = 11110000b, CF=0.
MOV BL, 4Ch ; BL = 01001100b
SAR BL, 1 ; BL = 00100110b, CF=0.
RET
|
||||||||||||||
SBB | REG, memory memory, REG REG, REG memory, immediate REG, immediate |
Subtract with Borrow. Algorithm: operand1 = operand1 - operand2 - CF Example: STC
MOV AL, 5
SBB AL, 3 ; AL = 5 - 3 - 1 = 1
RET
|
||||||||||||||
SCASB | No operands | Compare bytes: AL from ES:[DI]. Algorithm:
|
||||||||||||||
SCASW | No operands | Compare words: AX from ES:[DI]. Algorithm:
|
||||||||||||||
SHL | memory, immediate REG, immediate memory, CL REG, CL |
Shift operand1 Left. The number of shifts is set by operand2. Algorithm:
MOV AL, 11100000b
SHL AL, 1 ; AL = 11000000b, CF=1.
RET
|
||||||||||||||
SHR | memory, immediate REG, immediate memory, CL REG, CL |
Shift operand1 Right. The number of shifts is set by operand2. Algorithm:
MOV AL, 00000111b
SHR AL, 1 ; AL = 00000011b, CF=1.
RET
|
||||||||||||||
STC | No operands | Set Carry flag. Algorithm: CF = 1
|
||||||||||||||
STD | No operands | Set Direction flag. SI and DI will be decremented by chain instructions: CMPSB, CMPSW, LODSB, LODSW, MOVSB, MOVSW, STOSB, STOSW. Algorithm: DF = 1
|
||||||||||||||
STI | No operands | Set Interrupt enable flag. This enables hardware interrupts. Algorithm: IF = 1
|
||||||||||||||
STOSB | No operands | Store byte in AL into ES:[DI]. Update DI. Algorithm:
ORG 100h
LEA DI, a1
MOV AL, 12h
MOV CX, 5
REP STOSB
RET
a1 DB 5 dup(0)
|
||||||||||||||
STOSW | No operands | Store word in AX into ES:[DI]. Update DI. Algorithm:
ORG 100h
LEA DI, a1
MOV AX, 1234h
MOV CX, 5
REP STOSW
RET
a1 DW 5 dup(0)
|
||||||||||||||
SUB | REG, memory memory, REG REG, REG memory, immediate REG, immediate |
Subtract. Algorithm: operand1 = operand1 - operand2 Example: MOV AL, 5
SUB AL, 1 ; AL = 4
RET
|
||||||||||||||
TEST | REG, memory memory, REG REG, REG memory, immediate REG, immediate |
Logical AND between all bits of two operands for flags only. These flags are effected: ZF, SF, PF. Result is not stored anywhere. These rules apply: 1 AND 1 = 1 1 AND 0 = 0 0 AND 1 = 0 0 AND 0 = 0 Example: MOV AL, 00000101b
TEST AL, 1 ; ZF = 0.
TEST AL, 10b ; ZF = 1.
RET
|
||||||||||||||
XCHG | REG, memory memory, REG REG, REG |
Exchange values of two operands. Algorithm: operand1 < - > operand2 Example: MOV AL, 5
MOV AH, 2
XCHG AL, AH ; AL = 2, AH = 5
XCHG AL, AH ; AL = 5, AH = 2
RET
|
||||||||||||||
XLATB | No operands | Translate byte from table. Copy value of memory byte at DS:[BX + unsigned AL] to AL register. Algorithm: AL = DS:[BX + unsigned AL] Example:
ORG 100h
LEA BX, dat
MOV AL, 2
XLATB ; AL = 33h
RET
dat DB 11h, 22h, 33h, 44h, 55h
|
||||||||||||||
XOR | REG, memory memory, REG REG, REG memory, immediate REG, immediate |
Logical XOR (Exclusive OR) between all bits of two operands. Result is stored in first operand. These rules apply: 1 XOR 1 = 0 1 XOR 0 = 1 0 XOR 1 = 1 0 XOR 0 = 0 Example: MOV AL, 00000111b
XOR AL, 00000010b ; AL = 00000101b
RET
|