2019 ccpc 秦皇岛

D

如果1/n是有限小数,不停乘以10,一定在有限次之后成为一个整数。

10的质因子只有2和5,只要保证分母的质因子只有2和5即可

#include 
#include 
#include <string>
#include 
#include 
#include 
#include 
#include 
#define fo(i, l, r) for (long long i = l; i <= r; i++)
#define fd(i, l, r) for (long long i = r; i >= l; i--)
#define mem(x) memset(x, 0, sizeof(x))
#define ll long long
#define ld double
using namespace std;
const int maxn = 150;
const ll mod = 1e9 + 7;
const double eps = 1e-9;
ll read()
{
    ll x = 0, f = 1;
    char ch = getchar();
    while (!(ch >= '0' && ch <= '9'))
    {
        if (ch == '-')
            f = -1;
        ch = getchar();
    };
    while (ch >= '0' && ch <= '9')
    {
        x = x * 10 + (ch - '0');
        ch = getchar();
    };
    return x * f;
}
int main()
{
    int T,n;
    T=read();
    while(T--){
        n=read();
        while(n%2==0)n/=2;
        while(n%5==0)n/=5;
        if(n>1){
            printf("Yes\n");
        }else{
            printf("No\n");
        }
    }
    return 0;
}

F

仙人掌,环之间不相互影响,一个环至少删掉一条边,链无所谓,分别计算乘法原理合并

#include 
#include 
#include <string>
#include 
#include 
#include 
#include 
#include 
#define fo(i, l, r) for (long long i = l; i <= r; i++)
#define fd(i, l, r) for (long long i = r; i >= l; i--)
#define mem(x) memset(x, 0, sizeof(x))
#define ll long long
#define ld double
using namespace std;
const int maxn = 300500;
const ll mod = 998244353;
const double eps = 1e-9;
ll read()
{
    ll x = 0, f = 1;
    char ch = getchar();
    while (!(ch >= '0' && ch <= '9'))
    {
        if (ch == '-')
            f = -1;
        ch = getchar();
    };
    while (ch >= '0' && ch <= '9')
    {
        x = x * 10 + (ch - '0');
        ch = getchar();
    };
    return x * f;
}
vector<int> g[maxn];
int n,m;
int d[maxn],rem;
ll ans,pw[maxn*2];
void dfs(int u,int fa,int deep){
    d[u] = deep;
    int v,sz=(int)g[u].size()-1;
    fo(i,0,sz){
        v=g[u][i];
        if(v==fa)continue;
        if(!d[v]) dfs(v,u,deep+1);
        else if(d[v]<d[u]){
            ans=(ans*(pw[d[u]-d[v]+1]-1+mod))%mod;
            rem -= (d[u]-d[v]+1);
        }
    }
}
int main()
{
    pw[0]=1;pw[1]=2;
    fo(i,2,500010) pw[i] = (pw[i-1]+pw[i-1])%mod;
    int u,v;
    while(scanf("%d%d",&n,&m)!=EOF){
        ans=1;
        rem=m;
        fo(i,1,n){
            d[i]=0;
            g[i].clear();
        }
        fo(i,1,m){
            u=read();v=read();
            g[u].push_back(v);
            g[v].push_back(u);
        }
        fo(i,1,n){
            if(!d[i]){
                dfs(i,0,1);
            }
        }
        ans=(ans*pw[rem])%mod;
        printf("%lld\n",ans);
    }
    return 0;
}

I

和之前做过的一个题很像,但是那个题需要贪心的性质为支撑,这个dp直接做就行了

#include 
#include 
#include <string>
#include 
#include 
#include 
#include 
#include 
#define fo(i, l, r) for (long long i = l; i <= r; i++)
#define fd(i, l, r) for (long long i = r; i >= l; i--)
#define mem(x) memset(x, 0, sizeof(x))
#define ll long long
#define ld double
using namespace std;
const int maxn = 100500;
const ll mod = 998244353;
const double eps = 1e-9;
ll read()
{
    ll x = 0, f = 1;
    char ch = getchar();
    while (!(ch >= '0' && ch <= '9'))
    {
        if (ch == '-')
            f = -1;
        ch = getchar();
    };
    while (ch >= '0' && ch <= '9')
    {
        x = x * 10 + (ch - '0');
        ch = getchar();
    };
    return x * f;
}
int n;
int req[150][5];
char s[10][4]={"QQQ","QQW","QQE","WWW","QWW","WWE","EEE","QEE","WEE","QWE"};
char t[11] = "YVGCXZTFDB";
char a[maxn],b[maxn];
int dp[maxn][3][3][3],sum1[maxn][3][3],sum2[maxn][3],sum3[maxn],cnt[3];
int main()
{
    fo(i,0,9){
        fo(j,0,2){
            if(s[i][j]=='Q')req[t[i]][0]++;
            if(s[i][j]=='W')req[t[i]][1]++;
            if(s[i][j]=='E')req[t[i]][2]++;
        }
    }
    while(scanf("%s",a+1)!=EOF){
        n=strlen(a+1);
        int m = 0;
        fo(i,1,n){
            if(a[i] != a[i-1]) b[++m] = a[i];
        }
        swap(n,m);
        memset(dp,0x3f,sizeof(dp));
        memset(sum1,0,sizeof(sum1));
        memset(sum2,0,sizeof(sum2));
        memset(sum3,0,sizeof(sum3));
        int ans = mod;
        fo(i,1,n){
            fo(t1,0,2){
                fo(t2,0,2){
                    fo(t3,0,2){
                        cnt[0]=cnt[1]=cnt[2]=0;
                        cnt[t1]++;
                        cnt[t2]++;
                        cnt[t3]++;
                        if(cnt[0]!=req[b[i]][0]||cnt[1]!=req[b[i]][1]||cnt[2]!=req[b[i]][2])continue;
                        
                        dp[i][t1][t2][t3] = sum3[i-1]+3;
                        if(sum1[i-1][t1][t2]) dp[i][t1][t2][t3] = min(dp[i][t1][t2][t3],sum1[i-1][t1][t2]+1);
                        if(sum2[i-1][t1]) dp[i][t1][t2][t3] = min(dp[i][t1][t2][t3],sum2[i-1][t1]+2);
                        if(!sum1[i][t2][t3] || (sum1[i][t2][t3] > dp[i][t1][t2][t3])){
                            sum1[i][t2][t3] = dp[i][t1][t2][t3];
                        }
                        if(!sum2[i][t3] || (sum2[i][t3] > dp[i][t1][t2][t3])){
                            sum2[i][t3] = dp[i][t1][t2][t3];
                        }
                        if(!sum3[i] || (sum3[i] > dp[i][t1][t2][t3])){
                            sum3[i] = dp[i][t1][t2][t3];
                        }
                        if(i==n) ans=min(ans,dp[i][t1][t2][t3] + m);
                    }
                }
            }
        }
        printf("%d\n",ans);
    }
    return 0;
}

 

J

倒过来做kmp找循环节

#include 
#include 
#include <string>
#include 
#include 
#include 
#include 
#include 
#define fo(i, l, r) for (long long i = l; i <= r; i++)
#define fd(i, l, r) for (long long i = r; i >= l; i--)
#define mem(x) memset(x, 0, sizeof(x))
#define ll long long
#define ld double
using namespace std;
const int maxn = 10000500;
const ll mod = 998244353;
const double eps = 1e-9;
ll read()
{
    ll x = 0, f = 1;
    char ch = getchar();
    while (!(ch >= '0' && ch <= '9'))
    {
        if (ch == '-')
            f = -1;
        ch = getchar();
    };
    while (ch >= '0' && ch <= '9')
    {
        x = x * 10 + (ch - '0');
        ch = getchar();
    };
    return x * f;
}
int nxt[maxn];
void kmp_pre(char x[], int m, int next[])
{
    int i, j;
    j = next[0] =-1;
    i = 0;
    while (i < m)
    {
        while (-1 != j && x[i] != x[j])
            j = next[j];
        next[++i] = ++j;
    }
}
ll a, b,ans;
char s[maxn], x[maxn];
int n, m;
int main()
{
    while (scanf("%lld%lld", &a, &b) != EOF)
    {
        scanf("%s", s + 1);
        n = strlen(s + 1);
        m = 0;
        fd(i, 1, n)
        {
            if (s[i] < '0' || s[i] > '9')
                break;
            x[++m] = s[i];
        }
        kmp_pre(x+1,m,nxt);
        ans = a-b;
        fo(i,2,m){
            ans=max(ans,a*i-b*(i-nxt[i]));
        }
        printf("%lld\n",ans);
    }

    return 0;
}

A

直角三角形,就要看直角边在哪个点上,分两种情况讨论,然后围绕着直角点极角排序,找垂直的边。

#pragma GCC optimize(2)
#include 
#include 
#include <string>
#include 
#include 
#include 
#include 
#include 
#include <set>
#include 
#include 
#include 
#include 
#define ll long long
#define ld double
#define lson rt << 1, l, m
#define pi acos(-1)
#define rson rt << 1 | 1, m + 1, r
#define fo(i, l, r) for (int i = l; i <= r; i++)
#define fd(i, l, r) for (int i = r; i >= l; i--)
#define mem(x) memset(x, 0, sizeof(x))
#define eps 1e-7
using namespace std;
const ll maxn = 4050;
const ll mod = 998244353;
ll read()
{
    ll x = 0, f = 1;
    char ch = getchar();
    while (!(ch >= '0' && ch <= '9'))
    {
        if (ch == '-')
            f = -1;
        ch = getchar();
    };
    while (ch >= '0' && ch <= '9')
    {
        x = x * 10 + (ch - '0');
        ch = getchar();
    };
    return x * f;
}
struct Point
{
    ll x, y;
    int isq,id;
    Point() {}
    Point(ll _x, ll _y)
    {
        x = _x;
        y = _y;
    }
    ll operator^(const Point &b) const
    {
        return x * b.y - y * b.x;
    }
    ll operator*(const Point &b) const
    {
        return x * b.x + y * b.y;
    }
    Point operator-(const Point &b) const
    {
        return Point(x - b.x, y - b.y);
    }
    Point operator+(const Point &b) const
    {
        return Point(x + b.x, y + b.y);
    }
    Point rotleft(){
        return Point(-y,x);
    }
    Point rotright(){
        return Point(y,-x);
    }
    int getfield(){
        if(x>0&&y>=0)return 1;
        if(x<=0&&y>0)return 2;
        if(x<0&&y<=0)return 3;
        if(x>=0&&y<0)return 4;
        return 5;
    }
} ns[maxn], tmp[maxn],qs[maxn], now;
struct cmp
{
    Point p;
    cmp(const Point &p0){p = p0;}
    bool operator()(const Point &aa,const Point &bb)
    {
        Point a = aa-p,b = bb-p;
        if(a.getfield() != b.getfield()){
            return a.getfield() < b.getfield();
        }else{
            return (a^b)>0;
        }
    }
};
int n, q;
ll ans[maxn];
ll sum[maxn];
int main()
{
    while (scanf("%d%d", &n, &q) != EOF)
    {
        mem(ans);
        fo(i, 1, n)
        {
            scanf("%lld%lld",&ns[i].x,&ns[i].y);
            ns[i].isq=0;ns[i].id=i;
            tmp[i]=ns[i];
        }
        fo(i, 1, q)
        {
            scanf("%lld%lld",&qs[i].x,&qs[i].y);
            qs[i].isq=1;qs[i].id=i;
            now = qs[i];
            sort(ns + 1, ns + 1 + n, cmp(now));
            fo(j,1,n){
                now=(ns[j]-qs[i]).rotleft();
                now=qs[i]+now;
                int ret = upper_bound(ns+1,ns+1+n,now,cmp(qs[i])) - lower_bound(ns+1,ns+1+n,now,cmp(qs[i]));
                ans[i] += ret;
            }
        }
        fo(i,1,q){
            ns[n+i]=qs[i];
        }
        fo(i,1,n){
            now = tmp[i];
            sort(ns+1,ns+1+n+q,cmp(tmp[i]));
            fo(j,1,n+q){
                if(!ns[j].isq&&ns[j].id!=now.id)sum[j]=sum[j-1]+1;
                else sum[j]=sum[j-1];
            }
            fo(j,1,n+q){
                if(!ns[j].isq)continue;
                now=(ns[j]-tmp[i]).rotleft();
                now=tmp[i]+now;
                ans[ns[j].id] += sum[upper_bound(ns+1,ns+1+n+q,now,cmp(tmp[i]))-ns-1] - sum[lower_bound(ns+1,ns+1+n+q,now,cmp(tmp[i]))-ns-1];
                now=(ns[j]-tmp[i]).rotright();
                now=tmp[i]+now;
                ans[ns[j].id] += sum[upper_bound(ns+1,ns+1+n+q,now,cmp(tmp[i]))-ns-1] - sum[lower_bound(ns+1,ns+1+n+q,now,cmp(tmp[i]))-ns-1];
            }
        }
        fo(i,1,q) printf("%lld\n",ans[i]);
    }
    return 0;
}

 E

给某些节点一个通过量的限制,从某些点出发、一些终点,可以向网络流的方向考虑,如何建图?

分析性质,假如说一个机器人从格点的一个边进入,再从某个边出,如果有人跟他反着来,则必然会逆着他走的路到第一行。

如果有人顺着它的路线走,那么会跟他走进同一个终点。

也就是说,如果这个节点,它拐弯了,那就只能一个机器人走一次。

如果它没拐弯,横着走过去之后,竖着走过去不会和原来横着走的路径有同样或者相反的结果,也就是能走两次。

拆点,把每个点拆成横竖两个点,相邻的恒竖相连,可以走2次,同一个点横竖相连,割这个边就说明在这个点放了转向器,只能走一次。

#include 
#include 
#include <string>
#include 
#include 
#include 
#include 
#include 
#define fo(i, l, r) for (int i = l; i <= r; i++)
#define fd(i, l, r) for (int i = r; i >= l; i--)
#define mem(x) memset(x, 0, sizeof(x))
#define ll long long
using namespace std;
const int maxn = 300050;
ll read()
{
    ll x = 0, f = 1;
    char ch = getchar();
    while (!(ch >= '0' && ch <= '9'))
    {
        if (ch == '-')
            f = -1;
        ch = getchar();
    };
    while (ch >= '0' && ch <= '9')
    {
        x = x * 10 + (ch - '0');
        ch = getchar();
    };
    return x * f;
}
const int MAXN = 200010; //点数的最大值
const int MAXM = 1600010; //边数的最大值
const int INF = 0x3f3f3f3f;
struct Edge
{
    int to, next, cap, flow;
} edge[MAXM]; //注意是 MAXM
int tol;
int head[MAXN];
int gap[MAXN], dep[MAXN], cur[MAXN];
void init()
{
    tol = 0;
    memset(head,-1, sizeof(head));
}
void addedge(int u, int v, int w, int rw = 0)
{
    edge[tol].to = v;
    edge[tol].cap = w;
    edge[tol].flow = 0;
    edge[tol].next = head[u];
    head[u] = tol++;
    edge[tol].to = u;
    edge[tol].cap = rw;
    edge[tol].flow = 0;
    edge[tol].next = head[v];
    head[v] = tol++;
}
int Q[MAXN];
void BFS(int start, int end)
{
    memset(dep,-1, sizeof(dep));
    memset(gap, 0, sizeof(gap));
    gap[0] = 1;
    int front = 0, rear = 0;
    dep[end] = 0;
    Q[rear++] = end;
    while (front != rear)
    {
        int u = Q[front++];
        for (int i = head[u]; i != -1; i = edge[i].next)
        {
            int v = edge[i].to;
            if (dep[v] != -1)
                continue;
            Q[rear++] = v;
            dep[v] = dep[u] + 1;
            gap[dep[v]]++;
        }
    }
}
int S[MAXN];
int sap(int start, int end, int N)
{
    BFS(start, end);
    memcpy(cur, head, sizeof(head));
    int top = 0;
    int u = start;
    int ans = 0;
    while (dep[start] < N)
    {
        if (u == end)
        {
            int Min = INF;
            int inser;
            for (int i = 0; i < top; i++)
                if (Min > edge[S[i]].cap - edge[S[i]].flow)
                {
                    Min = edge[S[i]].cap - edge[S[i]].flow;
                    inser = i;
                }
            for (int i = 0; i < top; i++)
            {
                edge[S[i]].flow += Min;
                edge[S[i] ^ 1].flow -= Min;
            }
            ans += Min;
            top = inser;
            u = edge[S[top] ^ 1].to;
            continue;
        }
        bool flag = false;
        int v;
        for (int i = cur[u]; i != -1; i = edge[i].next)
        {
            v = edge[i].to;
            if (edge[i].cap - edge[i].flow && dep[v] + 1 == dep[u])
            {
                flag = true;
                cur[u] = i;
                break;
            }
        }
        if (flag)
        {
            S[top++] = cur[u];
            u = v;
            continue;
        }
        int Min = N;
        for (int i = head[u]; i != -1; i = edge[i].next)
            if (edge[i].cap - edge[i].flow && dep[edge[i].to] < Min)
            {
                Min = dep[edge[i].to];
                cur[u] = i;
            }
        gap[dep[u]]--;
        if (!gap[dep[u]])
            return ans;
        dep[u] = Min + 1;
        gap[dep[u]]++;
        if (u != start)
            u = edge[S[--top] ^ 1].to;
    }
    return ans;
}
int n,m,a,b;
char mp[105][105];
inline int tran(int y,int x,int dir){
    int t = (y-1)*m+x;
    if(dir) t+=n*m;
    return t;
}
inline bool jud(int y,int x){
    return y>=1&&y<=n&&x>=1&&x<=m&&mp[y][x]=='0';
}
int main()
{
    int T=read();
    while(T--){
        init();
        n=read();m=read();a=read();b=read();
        fo(i,1,n){
            scanf("%s",mp[i]+1);
        }
        fo(i,1,n){
            fo(j,1,m){
                if(jud(i-1,j)) addedge(tran(i,j,0),tran(i-1,j,0),1);
                if(jud(i+1,j)) addedge(tran(i,j,0),tran(i+1,j,0),1);
                if(jud(i,j-1)) addedge(tran(i,j,1),tran(i,j-1,1),1);
                if(jud(i,j+1)) addedge(tran(i,j,1),tran(i,j+1,1),1);
                addedge(tran(i,j,0),tran(i,j,1),1);
                addedge(tran(i,j,1),tran(i,j,0),1);
            }
        }
        int u;
        fo(i,1,a){
            u=read();
            addedge(0,tran(1,u,0),1);
        }
        fo(i,1,b){
            u=read();
            addedge(tran(n,u,0),n*m*2+1,1);
        }
        if(sap(0,n*m*2+1,n*m*2+2)==a){
            printf("Yes\n");
        }else{
            printf("No\n");
        }
    }    
    return 0;
}

 

转载于:https://www.cnblogs.com/hyfer/p/11612825.html

你可能感兴趣的:(2019 ccpc 秦皇岛)