HTML>
<html lang="en">
<head>
<title>Listing 7-3 and 7-4, Texturing and Lighting With the Phong Reflection Model.title>
<script src="./lib/webgl-debug.js">script>
<script src="./lib/glMatrix.js">script>
<script src="./lib/webgl-utils.js">script>
<meta charset="utf-8">
<script id="shader-vs" type="x-shader/x-vertex">
// Vertex shader implemented to perform lighting according to the
// Phong reflection model. Forwards texture coordinates to fragment
// shader.
attribute vec3 aVertexPosition;
attribute vec3 aVertexNormal;
attribute vec2 aTextureCoordinates;
uniform mat4 uMVMatrix;
uniform mat4 uPMatrix;
uniform mat3 uNMatrix;
uniform vec3 uLightPosition;
uniform vec3 uAmbientLightColor;
uniform vec3 uDiffuseLightColor;
uniform vec3 uSpecularLightColor;
varying vec2 vTextureCoordinates;
varying vec3 vLightWeighting;
const float shininess = 32.0;
void main() {
// Get the vertex position in eye coordinates
vec4 vertexPositionEye4 = uMVMatrix * vec4(aVertexPosition, 1.0);
vec3 vertexPositionEye3 = vertexPositionEye4.xyz / vertexPositionEye4.w;
// Calculate the vector (l) to the light source
vec3 vectorToLightSource = normalize(uLightPosition - vertexPositionEye3);
// Transform the normal (n) to eye coordinates
vec3 normalEye = normalize(uNMatrix * aVertexNormal);
// Calculate n dot l for diffuse lighting
float diffuseLightWeightning = max(dot(normalEye,
vectorToLightSource), 0.0);
// Calculate the reflection vector (r) that is needed for specular light
vec3 reflectionVector = normalize(reflect(-vectorToLightSource,
normalEye));
// The camera in eye coordinates is located in the origin and is pointing
// along the negative z-axis. Calculate viewVector (v) in eye coordinates as:
// (0.0, 0.0, 0.0) - vertexPositionEye3
vec3 viewVectorEye = -normalize(vertexPositionEye3);
float rdotv = max(dot(reflectionVector, viewVectorEye), 0.0);
float specularLightWeightning = pow(rdotv, shininess);
// Sum up all three reflection components and send to the fragment shader
vLightWeighting = uAmbientLightColor +
uDiffuseLightColor * diffuseLightWeightning +
uSpecularLightColor * specularLightWeightning;
// Finally transform the geometry
gl_Position = uPMatrix * uMVMatrix * vec4(aVertexPosition, 1.0);
vTextureCoordinates = aTextureCoordinates;
}
script>
<script id="shader-fs" type="x-shader/x-fragment">
precision mediump float;
varying vec2 vTextureCoordinates;
varying vec3 vLightWeighting;
uniform sampler2D uSampler;
void main() {
vec4 texelColor = texture2D(uSampler, vTextureCoordinates);
//结合了纹理和光照的片段着色器(vLightWeighting包含已经计算得到的环境光和漫反射光)
gl_FragColor = vec4(vLightWeighting.rgb * texelColor.rgb, texelColor.a);
}
script>
<script type="text/javascript">
// globals
var gl;
var pwgl = {};
// Keep track of ongoing image loads to be able to handle lost context
pwgl.ongoingImageLoads = [];
var canvas;
function createGLContext(canvas) {
var names = ["webgl", "experimental-webgl"];
var context = null;
for (var i=0; i < names.length; i++) {
try {
context = canvas.getContext(names[i]);
} catch(e) {}
if (context) {
break;
}
}
if (context) {
context.viewportWidth = canvas.width;
context.viewportHeight = canvas.height;
} else {
alert("Failed to create WebGL context!");
}
return context;
}
function loadShaderFromDOM(id) {
var shaderScript = document.getElementById(id);
// If we don't find an element with the specified id
// we do an early exit
if (!shaderScript) {
return null;
}
// Loop through the children for the found DOM element and
// build up the shader source code as a string
var shaderSource = "";
var currentChild = shaderScript.firstChild;
while (currentChild) {
if (currentChild.nodeType == 3) { // 3 corresponds to TEXT_NODE
shaderSource += currentChild.textContent;
}
currentChild = currentChild.nextSibling;
}
var shader;
if (shaderScript.type == "x-shader/x-fragment") {
shader = gl.createShader(gl.FRAGMENT_SHADER);
} else if (shaderScript.type == "x-shader/x-vertex") {
shader = gl.createShader(gl.VERTEX_SHADER);
} else {
return null;
}
gl.shaderSource(shader, shaderSource);
gl.compileShader(shader);
if (!gl.getShaderParameter(shader, gl.COMPILE_STATUS) &&
!gl.isContextLost()) {
alert(gl.getShaderInfoLog(shader));
return null;
}
return shader;
}
function setupShaders() {
var vertexShader = loadShaderFromDOM("shader-vs");
var fragmentShader = loadShaderFromDOM("shader-fs");
var shaderProgram = gl.createProgram();
gl.attachShader(shaderProgram, vertexShader);
gl.attachShader(shaderProgram, fragmentShader);
gl.linkProgram(shaderProgram);
if (!gl.getProgramParameter(shaderProgram, gl.LINK_STATUS) &&
!gl.isContextLost()) {
alert("Failed to link shaders: " + gl.getProgramInfoLog(shaderProgram));
}
gl.useProgram(shaderProgram);
pwgl.vertexPositionAttributeLoc =
gl.getAttribLocation(shaderProgram, "aVertexPosition");
pwgl.vertexNormalAttributeLoc =
gl.getAttribLocation(shaderProgram, "aVertexNormal");
pwgl.vertexTextureAttributeLoc =
gl.getAttribLocation(shaderProgram, "aTextureCoordinates");
pwgl.uniformMVMatrixLoc =
gl.getUniformLocation(shaderProgram, "uMVMatrix");
pwgl.uniformProjMatrixLoc =
gl.getUniformLocation(shaderProgram, "uPMatrix");
pwgl.uniformNormalMatrixLoc =
gl.getUniformLocation(shaderProgram, "uNMatrix");
pwgl.uniformSamplerLoc =
gl.getUniformLocation(shaderProgram, "uSampler");
pwgl.uniformLightPositionLoc =
gl.getUniformLocation(shaderProgram, "uLightPosition");
pwgl.uniformAmbientLightColorLoc =
gl.getUniformLocation(shaderProgram, "uAmbientLightColor");
pwgl.uniformDiffuseLightColorLoc =
gl.getUniformLocation(shaderProgram, "uDiffuseLightColor");
pwgl.uniformSpecularLightColorLoc =
gl.getUniformLocation(shaderProgram, "uSpecularLightColor");
gl.enableVertexAttribArray(pwgl.vertexPositionAttributeLoc);
gl.enableVertexAttribArray(pwgl.vertexNormalAttributeLoc);
gl.enableVertexAttribArray(pwgl.vertexTextureAttributeLoc);
pwgl.modelViewMatrix = mat4.create();
pwgl.projectionMatrix = mat4.create();
pwgl.modelViewMatrixStack = [];
}
function pushModelViewMatrix() {
var copyToPush = mat4.create(pwgl.modelViewMatrix);
pwgl.modelViewMatrixStack.push(copyToPush);
}
function popModelViewMatrix() {
if (pwgl.modelViewMatrixStack.length == 0) {
throw "Error popModelViewMatrix() - Stack was empty ";
}
pwgl.modelViewMatrix = pwgl.modelViewMatrixStack.pop();
}
function setupFloorBuffers() {
pwgl.floorVertexPositionBuffer = gl.createBuffer();
gl.bindBuffer(gl.ARRAY_BUFFER, pwgl.floorVertexPositionBuffer);
var floorVertexPosition = [
// Plane in y=0
5.0, 0.0, 5.0, //v0
5.0, 0.0, -5.0, //v1
-5.0, 0.0, -5.0, //v2
-5.0, 0.0, 5.0]; //v3
gl.bufferData(gl.ARRAY_BUFFER, new Float32Array(floorVertexPosition),
gl.STATIC_DRAW);
pwgl.FLOOR_VERTEX_POS_BUF_ITEM_SIZE = 3;
pwgl.FLOOR_VERTEX_POS_BUF_NUM_ITEMS = 4;
//指定地板的法向量的方向
// Specify normals to be able to do lighting calculations
pwgl.floorVertexNormalBuffer = gl.createBuffer();
gl.bindBuffer(gl.ARRAY_BUFFER, pwgl.floorVertexNormalBuffer);
var floorVertexNormals = [
0.0, 1.0, 0.0, //v0
0.0, 1.0, 0.0, //v1
0.0, 1.0, 0.0, //v2
0.0, 1.0, 0.0]; //v3
gl.bufferData(gl.ARRAY_BUFFER, new Float32Array(floorVertexNormals),
gl.STATIC_DRAW);
pwgl.FLOOR_VERTEX_NORMAL_BUF_ITEM_SIZE = 3;
pwgl.FLOOR_VERTEX_NORMAL_BUF_NUM_ITEMS = 4;
// Setup texture coordinates buffer
pwgl.floorVertexTextureCoordinateBuffer = gl.createBuffer();
gl.bindBuffer(gl.ARRAY_BUFFER, pwgl.floorVertexTextureCoordinateBuffer);
var floorVertexTextureCoordinates = [
2.0, 0.0,
2.0, 2.0,
0.0, 2.0,
0.0, 0.0
];
gl.bufferData(gl.ARRAY_BUFFER, new Float32Array(floorVertexTextureCoordinates),
gl.STATIC_DRAW);
pwgl.FLOOR_VERTEX_TEX_COORD_BUF_ITEM_SIZE = 2;
pwgl.FLOOR_VERTEX_TEX_COORD_BUF_NUM_ITEMS = 4;
// Setup index buffer
pwgl.floorVertexIndexBuffer = gl.createBuffer();
gl.bindBuffer(gl.ELEMENT_ARRAY_BUFFER, pwgl.floorVertexIndexBuffer);
var floorVertexIndices = [0, 1, 2, 3];
gl.bufferData(gl.ELEMENT_ARRAY_BUFFER, new Uint16Array(floorVertexIndices),
gl.STATIC_DRAW);
pwgl.FLOOR_VERTEX_INDEX_BUF_ITEM_SIZE = 1;
pwgl.FLOOR_VERTEX_INDEX_BUF_NUM_ITEMS = 4;
}
function setupCubeBuffers() {
pwgl.cubeVertexPositionBuffer = gl.createBuffer();
gl.bindBuffer(gl.ARRAY_BUFFER, pwgl.cubeVertexPositionBuffer);
var cubeVertexPosition = [
// Front face
1.0, 1.0, 1.0, //v0
-1.0, 1.0, 1.0, //v1
-1.0, -1.0, 1.0, //v2
1.0, -1.0, 1.0, //v3
// Back face
1.0, 1.0, -1.0, //v4
-1.0, 1.0, -1.0, //v5
-1.0, -1.0, -1.0, //v6
1.0, -1.0, -1.0, //v7
// Left face
-1.0, 1.0, 1.0, //v8
-1.0, 1.0, -1.0, //v9
-1.0, -1.0, -1.0, //v10
-1.0, -1.0, 1.0, //v11
// Right face
1.0, 1.0, 1.0, //12
1.0, -1.0, 1.0, //13
1.0, -1.0, -1.0, //14
1.0, 1.0, -1.0, //15
// Top face
1.0, 1.0, 1.0, //v16
1.0, 1.0, -1.0, //v17
-1.0, 1.0, -1.0, //v18
-1.0, 1.0, 1.0, //v19
// Bottom face
1.0, -1.0, 1.0, //v20
1.0, -1.0, -1.0, //v21
-1.0, -1.0, -1.0, //v22
-1.0, -1.0, 1.0, //v23
];
gl.bufferData(gl.ARRAY_BUFFER, new Float32Array(cubeVertexPosition),
gl.STATIC_DRAW);
pwgl.CUBE_VERTEX_POS_BUF_ITEM_SIZE = 3;
pwgl.CUBE_VERTEX_POS_BUF_NUM_ITEMS = 24;
// Specify normals to be able to do lighting calculations
pwgl.cubeVertexNormalBuffer = gl.createBuffer();
gl.bindBuffer(gl.ARRAY_BUFFER, pwgl.cubeVertexNormalBuffer);
//指定立方体的每一个面的法向量
var cubeVertexNormals = [
// Front face
0.0, 0.0, 1.0, //v0
0.0, 0.0, 1.0, //v1
0.0, 0.0, 1.0, //v2
0.0, 0.0, 1.0, //v3
// Back face
0.0, 0.0, -1.0, //v4
0.0, 0.0, -1.0, //v5
0.0, 0.0, -1.0, //v6
0.0, 0.0, -1.0, //v7
// Left face
-1.0, 0.0, 0.0, //v8
-1.0, 0.0, 0.0, //v9
-1.0, 0.0, 0.0, //v10
-1.0, 0.0, 0.0, //v11
// Right face
1.0, 0.0, 0.0, //12
1.0, 0.0, 0.0, //13
1.0, 0.0, 0.0, //14
1.0, 0.0, 0.0, //15
// Top face
0.0, 1.0, 0.0, //v16
0.0, 1.0, 0.0, //v17
0.0, 1.0, 0.0, //v18
0.0, 1.0, 0.0, //v19
// Bottom face
0.0, -1.0, 0.0, //v20
0.0, -1.0, 0.0, //v21
0.0, -1.0, 0.0, //v22
0.0, -1.0, 0.0, //v23
];
gl.bufferData(gl.ARRAY_BUFFER, new Float32Array(cubeVertexNormals),
gl.STATIC_DRAW);
pwgl.CUBE_VERTEX_NORMAL_BUF_ITEM_SIZE = 3;
pwgl.CUBE_VERTEX_NORMAL_BUF_NUM_ITEMS = 24;
// Setup buffer with texture coordinates
pwgl.cubeVertexTextureCoordinateBuffer = gl.createBuffer();
gl.bindBuffer(gl.ARRAY_BUFFER, pwgl.cubeVertexTextureCoordinateBuffer);
var textureCoordinates = [
//Front face
0.0, 0.0, //v0
1.0, 0.0, //v1
1.0, 1.0, //v2
0.0, 1.0, //v3
// Back face
0.0, 1.0, //v4
1.0, 1.0, //v5
1.0, 0.0, //v6
0.0, 0.0, //v7
// Left face
0.0, 1.0, //v8
1.0, 1.0, //v9
1.0, 0.0, //v10
0.0, 0.0, //v11
// Right face
0.0, 1.0, //v12
1.0, 1.0, //v13
1.0, 0.0, //v14
0.0, 0.0, //v15
// Top face
0.0, 1.0, //v16
1.0, 1.0, //v17
1.0, 0.0, //v18
0.0, 0.0, //v19
// Bottom face
0.0, 1.0, //v20
1.0, 1.0, //v21
1.0, 0.0, //v22
0.0, 0.0, //v23
];
gl.bufferData(gl.ARRAY_BUFFER, new Float32Array(textureCoordinates),gl.STATIC_DRAW);
pwgl.CUBE_VERTEX_TEX_COORD_BUF_ITEM_SIZE = 2;
pwgl.CUBE_VERTEX_TEX_COORD_BUF_NUM_ITEMS = 24;
pwgl.cubeVertexIndexBuffer = gl.createBuffer();
gl.bindBuffer(gl.ELEMENT_ARRAY_BUFFER, pwgl.cubeVertexIndexBuffer);
var cubeVertexIndices = [
0, 1, 2, 0, 2, 3, // Front face
4, 6, 5, 4, 7, 6, // Back face
8, 9, 10, 8, 10, 11, // Left face
12, 13, 14, 12, 14, 15, // Right face
16, 17, 18, 16, 18, 19, // Top face
20, 22, 21, 20, 23, 22 // Bottom face
];
gl.bufferData(gl.ELEMENT_ARRAY_BUFFER, new Uint16Array(cubeVertexIndices),
gl.STATIC_DRAW);
pwgl.CUBE_VERTEX_INDEX_BUF_ITEM_SIZE = 1;
pwgl.CUBE_VERTEX_INDEX_BUF_NUM_ITEMS = 36;
}
function textureFinishedLoading(image, texture) {
gl.bindTexture(gl.TEXTURE_2D, texture);
gl.pixelStorei(gl.UNPACK_FLIP_Y_WEBGL, true);
gl.texImage2D(gl.TEXTURE_2D, 0, gl.RGBA, gl.RGBA, gl.UNSIGNED_BYTE,
image);
gl.generateMipmap(gl.TEXTURE_2D);
gl.texParameteri(gl.TEXTURE_2D, gl.TEXTURE_MAG_FILTER, gl.LINEAR);
gl.texParameteri(gl.TEXTURE_2D, gl.TEXTURE_MIN_FILTER, gl.LINEAR);
gl.texParameteri(gl.TEXTURE_2D, gl.TEXTURE_WRAP_S, gl.MIRRORED_REPEAT);
gl.texParameteri(gl.TEXTURE_2D, gl.TEXTURE_WRAP_T, gl.MIRRORED_REPEAT);
gl.bindTexture(gl.TEXTURE_2D, null);
}
function loadImageForTexture(url, texture) {
var image = new Image();
image.onload = function() {
pwgl.ongoingImageLoads.splice(pwgl.ongoingImageLoads.indexOf(image), 1);
textureFinishedLoading(image, texture);
}
pwgl.ongoingImageLoads.push(image);
image.src = url;
}
function setupTextures() {
// Texture for the table
pwgl.woodTexture = gl.createTexture();
loadImageForTexture("./resources/wood_128x128.jpg", pwgl.woodTexture);
// Texture for the floor
pwgl.groundTexture = gl.createTexture();
loadImageForTexture("./resources/wood_floor_256.jpg", pwgl.groundTexture);
// Texture for the box on the table
pwgl.boxTexture = gl.createTexture();
loadImageForTexture("./resources/wicker_256.jpg", pwgl.boxTexture);
//创建一个立方体
pwgl.colorCube = gl.createTexture();
loadImageForTexture("./resources/xiuxiuba.bmp", pwgl.colorCube);
}
function setupBuffers() {
setupFloorBuffers();
setupCubeBuffers();
}
//设置光源位置,环境光颜色,漫反射光颜色,镜面反射光
function setupLights() {
gl.uniform3fv(pwgl.uniformLightPositionLoc, [0.0, 20.0, 0.0]);
gl.uniform3fv(pwgl.uniformAmbientLightColorLoc, [0.2, 0.2, 0.2]);
gl.uniform3fv(pwgl.uniformDiffuseLightColorLoc, [0.7, 0.7, 0.7]);
gl.uniform3fv(pwgl.uniformSpecularLightColorLoc, [0.8, 0.8, 0.8]);
}
function uploadModelViewMatrixToShader() {
gl.uniformMatrix4fv(pwgl.uniformMVMatrixLoc, false, pwgl.modelViewMatrix);
}
function uploadProjectionMatrixToShader() {
gl.uniformMatrix4fv(pwgl.uniformProjMatrixLoc,
false, pwgl.projectionMatrix);
}
//上传法向量的矩阵到着色器
function uploadNormalMatrixToShader() {
var normalMatrix = mat3.create();
//计算矩阵的逆
mat4.toInverseMat3(pwgl.modelViewMatrix, normalMatrix);
//计算转置矩阵
mat3.transpose(normalMatrix);
//把法向量矩阵传给着色器
gl.uniformMatrix3fv(pwgl.uniformNormalMatrixLoc, false, normalMatrix);
}
function drawFloor() {
// Bind position buffer
gl.bindBuffer(gl.ARRAY_BUFFER, pwgl.floorVertexPositionBuffer);
gl.vertexAttribPointer(pwgl.vertexPositionAttributeLoc,
pwgl.FLOOR_VERTEX_POS_BUF_ITEM_SIZE,
gl.FLOAT, false, 0, 0);
// Bind normal buffer
gl.bindBuffer(gl.ARRAY_BUFFER, pwgl.floorVertexNormalBuffer);
gl.vertexAttribPointer(pwgl.vertexNormalAttributeLoc,
pwgl.FLOOR_VERTEX_NORMAL_BUF_ITEM_SIZE,
gl.FLOAT, false, 0, 0);
// Bind texture coordinate buffer
gl.bindBuffer(gl.ARRAY_BUFFER, pwgl.floorVertexTextureCoordinateBuffer);
gl.vertexAttribPointer(pwgl.vertexTextureAttributeLoc,
pwgl.FLOOR_VERTEX_TEX_COORD_BUF_ITEM_SIZE,
gl.FLOAT, false, 0, 0);
gl.activeTexture(gl.TEXTURE0);
gl.bindTexture(gl.TEXTURE_2D, pwgl.groundTexture);
// Bind index buffer and draw the floor
gl.bindBuffer(gl.ELEMENT_ARRAY_BUFFER, pwgl.floorVertexIndexBuffer);
gl.drawElements(gl.TRIANGLE_FAN, pwgl.FLOOR_VERTEX_INDEX_BUF_NUM_ITEMS,
gl.UNSIGNED_SHORT, 0);
}
function drawCube(texture) {
// Bind position buffer
gl.bindBuffer(gl.ARRAY_BUFFER, pwgl.cubeVertexPositionBuffer);
gl.vertexAttribPointer(pwgl.vertexPositionAttributeLoc,
pwgl.CUBE_VERTEX_POS_BUF_ITEM_SIZE,
gl.FLOAT, false, 0, 0);
// Bind normal buffer
gl.bindBuffer(gl.ARRAY_BUFFER, pwgl.cubeVertexNormalBuffer);
gl.vertexAttribPointer(pwgl.vertexNormalAttributeLoc,
pwgl.CUBE_VERTEX_NORMAL_BUF_ITEM_SIZE,
gl.FLOAT, false, 0, 0);
// Bind texture coordinate buffer
gl.bindBuffer(gl.ARRAY_BUFFER, pwgl.cubeVertexTextureCoordinateBuffer);
gl.vertexAttribPointer(pwgl.vertexTextureAttributeLoc,
pwgl.CUBE_VERTEX_TEX_COORD_BUF_ITEM_SIZE,
gl.FLOAT, false, 0, 0);
gl.activeTexture(gl.TEXTURE0);
gl.bindTexture(gl.TEXTURE_2D, texture);
// Bind index buffer and draw cube
gl.bindBuffer(gl.ELEMENT_ARRAY_BUFFER, pwgl.cubeVertexIndexBuffer);
gl.drawElements(gl.TRIANGLES, pwgl.CUBE_VERTEX_INDEX_BUF_NUM_ITEMS,
gl.UNSIGNED_SHORT, 0);
}
function drawTable(){
// Draw a simple table by modifying the modelview matrix
// (translate and scale) and then use the function drawCube()
// to draw a table top and four table legs.
pushModelViewMatrix();
mat4.translate(pwgl.modelViewMatrix, [0.0, 1.0, 0.0], pwgl.modelViewMatrix);
mat4.scale(pwgl.modelViewMatrix, [2.0, 0.1, 2.0], pwgl.modelViewMatrix);
uploadModelViewMatrixToShader();
uploadNormalMatrixToShader();
// Draw the actual cube (now scaled to a cuboid) with woodTexture
drawCube(pwgl.woodTexture);
popModelViewMatrix();
// Draw the table legs
for (var i=-1; i<=1; i+=2) {
for (var j= -1; j<=1; j+=2) {
pushModelViewMatrix();
mat4.translate(pwgl.modelViewMatrix, [i*1.9, -0.1, j*1.9], pwgl.modelViewMatrix);
mat4.scale(pwgl.modelViewMatrix, [0.1, 1.0, 0.1], pwgl.modelViewMatrix);
uploadModelViewMatrixToShader();
uploadNormalMatrixToShader();
drawCube(pwgl.woodTexture);
popModelViewMatrix();
}
}
}
pwgl.yRot = 0;
function draw(currentTime) {
pwgl.requestId = requestAnimFrame(draw);
if (currentTime === undefined) {
currentTime = Date.now();
}
currentTime = Date.now();
// Update FPS if a second or more has passed since last FPS update
if(currentTime - pwgl.previousFrameTimeStamp >= 1000) {
pwgl.fpsCounter.innerHTML = pwgl.nbrOfFramesForFPS;
pwgl.nbrOfFramesForFPS = 0;
pwgl.previousFrameTimeStamp = currentTime;
}
gl.viewport(0, 0, gl.viewportWidth, gl.viewportHeight);
gl.clear(gl.COLOR_BUFFER_BIT | gl.DEPTH_BUFFER_BIT);
mat4.perspective(60, gl.viewportWidth / gl.viewportHeight,
1, 100.0, pwgl.projectionMatrix);
mat4.identity(pwgl.modelViewMatrix);
mat4.lookAt([8, 12, 8],[0, 0, 0], [0, 1,0], pwgl.modelViewMatrix);
mat4.rotateY(pwgl.modelViewMatrix, pwgl.yRot, pwgl.modelViewMatrix);
pwgl.yRot += 0.01;
uploadModelViewMatrixToShader();
uploadProjectionMatrixToShader();
uploadNormalMatrixToShader();
gl.uniform1i(pwgl.uniformSamplerLoc, 0);
drawFloor();
// Draw table
pushModelViewMatrix();
mat4.translate(pwgl.modelViewMatrix, [0.0, 1.1, 0.0], pwgl.modelViewMatrix);
uploadModelViewMatrixToShader();
uploadNormalMatrixToShader();
drawTable();
popModelViewMatrix();
// Calculate the position for the box that is initially
// on top of the table but will then be moved during animation
pushModelViewMatrix();
if (currentTime === undefined) {
currentTime = Date.now();
}
if (pwgl.animationStartTime === undefined) {
pwgl.animationStartTime = currentTime;
}
// Update the position of the box
if (pwgl.y < 5) {
// First move the box vertically from its original position on top of
// the table (where y = 2.7) to 5 units above the floor (y = 5).
// Let this movement take 3 seconds
pwgl.y = 2.7 + (currentTime - pwgl.animationStartTime)/3000 * (5.0-2.7);
}
else {
// Then move the box in a circle where one revolution takes 2 seconds
pwgl.angle = (currentTime - pwgl.animationStartTime)/2000*2*Math.PI % (2*Math.PI);
pwgl.x = Math.cos(pwgl.angle) * pwgl.circleRadius;
pwgl.z = Math.sin(pwgl.angle) * pwgl.circleRadius;
}
mat4.translate(pwgl.modelViewMatrix, [pwgl.x, pwgl.y, pwgl.z], pwgl.modelViewMatrix);
mat4.scale(pwgl.modelViewMatrix, [0.5, 0.5, 0.5], pwgl.modelViewMatrix);
uploadModelViewMatrixToShader();
uploadNormalMatrixToShader();
drawCube(pwgl.boxTexture);
popModelViewMatrix();
// Update number of drawn frames to be able to count fps
pwgl.nbrOfFramesForFPS++;
}
function handleContextLost(event) {
event.preventDefault();
cancelRequestAnimFrame(pwgl.requestId);
// Ignore all ongoing image loads by removing
// their onload handler
for (var i = 0; i < pwgl.ongoingImageLoads.length; i++) {
pwgl.ongoingImageLoads[i].onload = undefined;
}
pwgl.ongoingImageLoads = [];
}
function init() {
// Initialization that is performed during first startup, but when the
// event webglcontextrestored is received is included in this function.
setupShaders();
setupBuffers();
setupLights();
setupTextures();
gl.clearColor(0.0, 0.0, 0.0, 1.0);
gl.enable(gl.DEPTH_TEST);
// Initialize some varibles for the moving box
pwgl.x = 0.0;
pwgl.y = 2.7;
pwgl.z = 0.0;
pwgl.circleRadius = 4.0;
pwgl.angle = 0;
// Initialize some variables related to the animation
pwgl.animationStartTime = undefined;
pwgl.nbrOfFramesForFPS = 0;
pwgl.previousFrameTimeStamp = Date.now();
}
function handleContextRestored(event) {
init();
pwgl.requestId = requestAnimFrame(draw,canvas);
}
function startup() {
canvas = document.getElementById("myGLCanvas");
canvas = WebGLDebugUtils.makeLostContextSimulatingContext(canvas);
canvas.addEventListener('webglcontextlost', handleContextLost, false);
canvas.addEventListener('webglcontextrestored', handleContextRestored, false);
gl = createGLContext(canvas);
init();
pwgl.fpsCounter = document.getElementById("fps");
// Uncomment the three lines of code below to be able to test lost context
// window.addEventListener('mousedown', function() {
// canvas.loseContext();
// });
// Draw the complete scene
draw();
}
script>
head>
<body οnlοad="startup();">
<canvas id="myGLCanvas" width="500" height="500">canvas>
<div id="fps-counter">
FPS: <span id="fps">--span>
div>
body>
html>