深度学习项目十一:mmdetection训练自己的数据集

mmdetection训练自己的数据集

这里写目录标题

  • mmdetection训练自己的数据集
  • 一: 环境搭建
  • 二:数据集格式转换(yolo转coco格式)
    • yolo数据集格式
    • coco数据集格式
    • yolo转coco数据集格式
    • yolo转coco数据集格式的代码
  • 三: 训练
    • dataset数据文件配置
    • configs
      • 1.在configs/faster_rcnn/faster-rcnn_r101_fpn_1x_coco.py我们发现,索引的是'./faster-rcnn_r50_fpn_1x_coco.py'
      • 2.找到'./faster-rcnn_r50_fpn_1x_coco.py',发现索引是下面代码
      • 3.修改
      • 4.训练
  • 五: 还在继续研究的内容

一: 环境搭建

  • 有很多的环境搭建过程,这里就不介绍,我自己也搭建环境了,一会就搭建好了。

二:数据集格式转换(yolo转coco格式)

yolo数据集格式

  • 因为我平时训练目标检测数据集用的YOLO系列,所以数据集格式标签也是txt,在最近接触的mmdetection训练目标检测数据集是需要用到coco格式,所以在这里需要转换数据集的格式。
  • 先来看看yolo数据集标签的格式,图片和标签一一对应的。有多少张图片就有多少张txt文件标签。
    ├── linhuo(这个是数据集名称)
    │ ├── images
    │ │ ├── train
    │ │ │ ├── 1.jpg
    │ │ │ ├── 2.jpg
    │ │ │ ├── …
    │ │ ├── val
    │ │ │ ├── 2000.jpg
    │ │ │ ├── 2001.jpg
    │ │ │ ├── …

你可能感兴趣的:(深度学习和视觉项目实战,目标跟踪,人工智能,计算机视觉,python,深度学习)