hashheap python 实现

class Node(object):
    """
    the type of class stored in the hashmap, in case there are many same heights
    in the heap, maintain the number
    """
    def __init__(self, id, num):
        self.id = id #id means its id in heap array
        self.num = num #number of same value in this id 处理重复元素
        
class HashHeap(object):
    def __init__(self, mode):
        self.heap = []
        self.mode = mode
        self.size = 0
        self.hash = {}
    def top(self):
        return self.heap[0] if len(self.heap) > 0 else 0
        
    def isempty(self):
        return len(self.heap) == 0
        
    def _comparesmall(self, a, b): #compare function in different mode
        if a <= b:
            if self.mode == 'min':
                return True
            else:
                return False
        else:
            if self.mode == 'min':
                return False
            else:
                return True
    def _swap(self, idA, idB): #swap two values in heap, we also need to change
        valA = self.heap[idA]
        valB = self.heap[idB]
        
        numA = self.hash[valA].num
        numB = self.hash[valB].num
        self.hash[valB] = Node(idA, numB)
        self.hash[valA] = Node(idB, numA)
        self.heap[idA], self.heap[idB] = self.heap[idB], self.heap[idA]
    
    def add(self, now):  #the key, height in this place
        self.size += 1
        if self.hash.get(now):
            hashnow = self.hash[now]
            self.hash[now] = Node(hashnow.id, hashnow.num + 1)
        else:
            self.heap.append(now)
            self.hash[now] = Node(len(self.heap) - 1,1)
            self._siftup(len(self.heap) - 1)
            
    def delete(self, now):
        self.size -= 1
        hashnow = self.hash[now]
        id = hashnow.id
        num = hashnow.num
        if num == 1:
            self._swap(id, len(self.heap)-1) #like the common delete operation
            self.hash.pop(now)
            self.heap.pop()
            if len(self.heap) > id:
                self._siftup(id)
                self._siftdown(id)
        else:
            self.hash[now] = Node(id, num - 1)
            
    def parent(self, id):
      if id == 0:
        return -1

      return (id - 1) / 2

    def _siftup(self,id):
        while abs(id -1)/2 < id :  #iterative version
            parentId = (id - 1)/2  #这里非常tricky.
            if self._comparesmall(self.heap[parentId],self.heap[id]):
                break
            else:
                self._swap(id, parentId)
            id = parentId
                
    def _siftdown(self, id): #iterative version
        while 2*id + 1 < len(self.heap):
            l = 2*id + 1
            r = l + 1
            small = id
            if self._comparesmall(self.heap[l], self.heap[id]):
                small = l
            if r < len(self.heap) and self._comparesmall(self.heap[r], self.heap[small]):
                small = r
            if small != id:
                self._swap(id, small)
            else:
                break
            id = small   

这个hashheap的实现可以既可以是最大堆,也可以是最小堆,同时因为hash表中存的value是在heap数组中的index和这个key值的数目,所以可以处理重复数字.关键在于siftup和siftdown的非递归实现.siftdown相当于heapify,但是之前只使用过递归版本.

转载于:https://www.cnblogs.com/sherylwang/p/5652943.html

你可能感兴趣的:(hashheap python 实现)