mapreduce 词频统计

  • 基于八股文的形式编写mapreduce 程序
  • 打包jar 与测试运行处理
  • wordcount 为例 理解mapreduce 并行计算原理

基于八股文的形式编写mapreduce 程序

mapreduce java 代码

package org.apache.hadoop.studyhdfs.mapredce;
import java.io.IOException;

import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.conf.Configured;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.Reducer;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
import org.apache.hadoop.util.Tool;
import org.apache.hadoop.util.ToolRunner;

/**
 * 
 * @author zhangyy
 *
 */
public class WordCountMapReduce extends Configured implements Tool{

    // step 1: mapper class
    /**
     * public class Mapper
     */
    public static class WordCountMapper extends //
        Mapper{
        // map output value
        private final static IntWritable mapOutputValue = new IntWritable(1) ;
        // map output key
        private Text mapOutputKey = new Text();

        @Override
        public void map(LongWritable key, Text value, Context context)
                throws IOException, InterruptedException {
            System.out.println("map-input-key =" + key + " : map-input-value = " + value);

            // line value
            String lineValue = value.toString();

            // split
            String[] strs = lineValue.split(" ") ;

            // iterator
            for(String str: strs){
                // set map output key 
                mapOutputKey.set(str);

                // output
                context.write(mapOutputKey, mapOutputValue);
            }
        }
    }

    // step 2: reducer class
    /**
     * public class Reducer
     */
    public static class WordCountReducer extends //
        Reducer{

        private IntWritable outputValue = new IntWritable() ;

        @Override
        public void reduce(Text key, Iterable values,
                Context context)
                throws IOException, InterruptedException {
            // temp: sum
            int sum = 0 ;

            // iterator
            for(IntWritable value: values){
                // total
                sum += value.get() ;
            }
            // set output value
            outputValue.set(sum);

            // output
            context.write(key, outputValue);
        }

    }

    // step 3: driver
    public int run(String[] args) throws Exception {
        // 1: get configuration
//      Configuration configuration = new Configuration();
        Configuration configuration = super.getConf() ;

        // 2: create job
        Job job = Job.getInstance(//
            configuration, //
            this.getClass().getSimpleName()//
        );
        job.setJarByClass(this.getClass());

        // 3: set job
        // input  -> map  -> reduce -> output
        // 3.1: input
        Path inPath = new Path(args[0]) ;
        FileInputFormat.addInputPath(job, inPath);

        // 3.2: mapper
        job.setMapperClass(WordCountMapper.class);
        job.setMapOutputKeyClass(Text.class);
        job.setMapOutputValueClass(IntWritable.class);

// ===========================Shuffle======================================     
        // 1) partitioner
//      job.setPartitionerClass(cls);
        // 2) sort
//      job.setSortComparatorClass(cls);
        // 3) combine
        job.setCombinerClass(WordCountReducer.class);
        // 4) compress
            // set by configuration
        // 5) group
//      job.setGroupingComparatorClass(cls);
// ===========================Shuffle======================================     

        // 3.3: reducer
        job.setReducerClass(WordCountReducer.class);
        job.setOutputKeyClass(Text.class);
        job.setOutputValueClass(IntWritable.class);
        // set reducer number
//      job.setNumReduceTasks(3);

        // 3.4: output
        Path outPath = new Path(args[1]);
        FileOutputFormat.setOutputPath(job, outPath);

        // 4: submit job 
        boolean isSuccess = job.waitForCompletion(true);

        return isSuccess ? 0 : 1 ;
    }

    public static void main(String[] args) throws Exception {

        // run job
//      int status = new WordCountMapReduce().run(args);

        // 1: get configuration
        Configuration configuration = new Configuration();

// ===============================Compress===================================
//      configuration.set("mapreduce.map.output.compress", "true");
//      configuration.set(name, value);
// ===============================Compress===================================

        int status = ToolRunner.run(//
            configuration, //
            new WordCountMapReduce(), //
            args
        ) ;

        // exit program
        System.exit(status);
    }

}

打包成为jar 包

mapreduce 词频统计_第1张图片

mapreduce 词频统计_第2张图片

运行jar 包输出结果

mapreduce 词频统计_第3张图片

转载于:https://blog.51cto.com/flyfish225/2096593

你可能感兴趣的:(mapreduce 词频统计)