Given an integer array, find a subarray with sum closest to zero. Return the indexes of the first number and last number.
Given [-3, 1, 1, -3, 5]
, return [0, 2]
, [1, 3]
, [1, 1]
, [2, 2]
or [0, 4]
.
这题求和最接近0的子数组,属于Subarray Sum的follow up.思路也很近似,每次求的是当前位置及之前的数组的一个和.但是这题并不是等于0,不会有一样的和出现,所以使用hashmap没什么可能.
在这种情况下,维护一个
1.求<sum,index>的pair数组时间复杂度O(n).
2.排序O(nlogn)
3.相邻的挨个比较O(n)
总体时间复杂度为O(n),空间复杂度为O(n).
注意<res,index>这种pair的技术在two pointer等题中经常用,设置key值比较的技术一定要会.代码如下:
class Solution: """ @param nums: A list of integers @return: A list of integers includes the index of the first number and the index of the last number """ def subarraySumClosest(self, nums): #two pointer res = [] sum = 0 for i in xrange(len(nums)): sum += nums[i] res.append((sum,i)) res.sort(key = lambda x: x[0]) left = -1 right = 0 diff = abs(res[0][0]) for i in xrange(1,len(nums)-1): if abs(res[i][0] - res[i-1][0]) < diff: left = min(res[i-1][1], res[i][1]) right = max(res[i-1][1], res[i][1]) diff = abs(res[i][0] - res[i-1][0]) return [left+1, right]