import tensorflow as tf
from tensorflow.python.training import moving_averages
fc_initializer = tf.contrib.layers.xavier_initializer
conv2d_initializer = tf.contrib.layers.xavier_initializer_conv2d
def create_var(name, shape, initializer, trainable=True):
return tf.get_variable(name, shape=shape, dtype=tf.float32,
initializer=initializer, trainable=trainable)
def conv2d(x, num_outputs, kernel_size, stride=1, scope="conv2d"):
num_inputs = x.get_shape()[-1]
with tf.variable_scope(scope):
kernel = create_var("kernel", [kernel_size, kernel_size,
num_inputs, num_outputs],
conv2d_initializer())
return tf.nn.conv2d(x, kernel, strides=[1, stride, stride, 1],
padding="SAME")
def fc(x, num_outputs, scope="fc"):
num_inputs = x.get_shape()[-1]
with tf.variable_scope(scope):
weight = create_var("weight", [num_inputs, num_outputs],
fc_initializer())
bias = create_var("bias", [num_outputs,],
tf.zeros_initializer())
return tf.nn.xw_plus_b(x, weight, bias)
def batch_norm(x, decay=0.999, epsilon=1e-03, is_training=True,
scope="scope"):
x_shape = x.get_shape()
num_inputs = x_shape[-1]
reduce_dims = list(range(len(x_shape) - 1))
with tf.variable_scope(scope):
beta = create_var("beta", [num_inputs,],
initializer=tf.zeros_initializer())
gamma = create_var("gamma", [num_inputs,],
initializer=tf.ones_initializer())
moving_mean = create_var("moving_mean", [num_inputs,],
initializer=tf.zeros_initializer(),
trainable=False)
moving_variance = create_var("moving_variance", [num_inputs],
initializer=tf.ones_initializer(),
trainable=False)
if is_training:
mean, variance = tf.nn.moments(x, axes=reduce_dims)
update_move_mean = moving_averages.assign_moving_average(moving_mean,
mean, decay=decay)
update_move_variance = moving_averages.assign_moving_average(moving_variance,
variance, decay=decay)
tf.add_to_collection(tf.GraphKeys.UPDATE_OPS, update_move_mean)
tf.add_to_collection(tf.GraphKeys.UPDATE_OPS, update_move_variance)
else:
mean, variance = moving_mean, moving_variance
return tf.nn.batch_normalization(x, mean, variance, beta, gamma, epsilon)
def avg_pool(x, pool_size, scope):
with tf.variable_scope(scope):
return tf.nn.avg_pool(x, [1, pool_size, pool_size, 1],
strides=[1, pool_size, pool_size, 1], padding="VALID")
def max_pool(x, pool_size, stride, scope):
with tf.variable_scope(scope):
return tf.nn.max_pool(x, [1, pool_size, pool_size, 1],
[1, stride, stride, 1], padding="SAME")
class ResNet50(object):
def __init__(self, inputs, num_classes=1000, is_training=True,
scope="resnet50"):
self.inputs =inputs
self.is_training = is_training
self.num_classes = num_classes
with tf.variable_scope(scope):
net = conv2d(inputs, 64, 7, 2, scope="conv1")
net = tf.nn.relu(batch_norm(net, is_training=self.is_training, scope="bn1"))
net = max_pool(net, 3, 2, scope="maxpool1")
net = self._block(net, 256, 3, init_stride=1, is_training=self.is_training,
scope="block2")
net = self._block(net, 512, 4, is_training=self.is_training, scope="block3")
net = self._block(net, 1024, 6, is_training=self.is_training, scope="block4")
net = self._block(net, 2048, 3, is_training=self.is_training, scope="block5")
net = avg_pool(net, 7, scope="avgpool5")
net = tf.squeeze(net, [1, 2], name="SpatialSqueeze")
self.logits = fc(net, self.num_classes, "fc6")
self.predictions = tf.nn.softmax(self.logits)
def _block(self, x, n_out, n, init_stride=2, is_training=True, scope="block"):
with tf.variable_scope(scope):
h_out = n_out // 4
out = self._bottleneck(x, h_out, n_out, stride=init_stride,
is_training=is_training, scope="bottlencek1")
for i in range(1, n):
out = self._bottleneck(out, h_out, n_out, is_training=is_training,
scope=("bottlencek%s" % (i + 1)))
return out
def _bottleneck(self, x, h_out, n_out, stride=None, is_training=True, scope="bottleneck"):
""" A residual bottleneck unit"""
n_in = x.get_shape()[-1]
if stride is None:
stride = 1 if n_in == n_out else 2
with tf.variable_scope(scope):
h = conv2d(x, h_out, 1, stride=stride, scope="conv_1")
h = batch_norm(h, is_training=is_training, scope="bn_1")
h = tf.nn.relu(h)
h = conv2d(h, h_out, 3, stride=1, scope="conv_2")
h = batch_norm(h, is_training=is_training, scope="bn_2")
h = tf.nn.relu(h)
h = conv2d(h, n_out, 1, stride=1, scope="conv_3")
h = batch_norm(h, is_training=is_training, scope="bn_3")
if n_in != n_out:
shortcut = conv2d(x, n_out, 1, stride=stride, scope="conv_4")
shortcut = batch_norm(shortcut, is_training=is_training, scope="bn_4")
else:
shortcut = x
return tf.nn.relu(shortcut + h)
if __name__ == "__main__":
x = tf.random_normal([32, 224, 224, 3])
resnet50 = ResNet50(x)
print(resnet50.logits)