本文建议阅读时间 8 min
目标检测(Object Detection)的任务是找出图像中所有感兴趣的目标(物体),确定它们的类别和位置,是计算机视觉领域的核心问题之一。由于各类物体有不同的外观、形状和姿态,加上成像时光照、遮挡等因素的干扰,目标检测一直是计算机视觉领域最具有挑战性的问题。
计算机视觉中关于图像识别有四大类任务:
分类-Classification:解决“是什么?”的问题,即给定一张图片或一段视频判断里面包含什么类别的目标。
定位-Location:解决“在哪里?”的问题,即定位出这个目标的的位置。
检测-Detection:解决“是什么?在哪里?”的问题,即定位出这个目标的的位置并且知道目标物是什么。
分割-Segmentation:分为实例的分割(Instance-level)和场景分割(Scene-level),解决“每一个像素属于哪个目标物或场景”的问题。
当前基于深度学习的目标检测算法主要分为两类:
1.Two stage目标检测算法:R-CNN、SPP-Net、Fast R-CNN、Faster R-CNN和R-FCN等。
2.One stage目标检测算法:OverFeat、YOLOv1、YOLOv2、YOLOv3、SSD和RetinaNet等。
在本文中,我们将使用 YOLOv3 在检测图像类别的位置及名称。
我们将使用 Darknet (是一个用 C 和 CUDA 编写的开源神经网络框架。它快速,易于安装,并支持 CPU 和GPU 计算。)、 OpenCV 在 3.3.1 版本中开始支持 Darknet,我们在 Darknet 框架下训练出来的模型,通过 OpenCV 读取模型,从而进行预测。
在这里,我们假设大家没有目标检测的知识,只是想体验一下目标检测做出来的效果,有个大致的概念。为满足一下大家的好奇心,我们将从 Darknet 官网上(https://pjreddie.com/darknet/yolo/)下载官方已经训练好的 YOLOv3 模型,直接读取模型做目标检测。
首先,看一下我们的目录结构
└─ root
│ code.py # 预测的代码
├─ cfg # 目标检测模型的配置文件
│ coco.names # 各个类别的名称
│ yolov3_coco.cfg # 目标检测网络的结构
│ yolov3_coco.weights # 目标检测模型的权重
│
├─ result_imgs # 测试图片结果保存
│ test1.jpg
│ test2.jpg
│ test3.jpg
│ test4.jpg
│
└─ test_imgs # 测试图片
test1.jpg
test2.jpg
test3.jpg
test4.jpg
接下来上我们的代码:
# -*- coding: utf-8 -*-
# 载入所需库
import cv2
import numpy as np
import os
import time
def yolo_detect(pathIn='',
pathOut=None,
label_path='./cfg/coco.names',
config_path='./cfg/yolov3_coco.cfg',
weights_path='./cfg/yolov3_coco.weights',
confidence_thre=0.5,
nms_thre=0.3,
jpg_quality=80):
'''
pathIn:原始图片的路径
pathOut:结果图片的路径
label_path:类别标签文件的路径
config_path:模型配置文件的路径
weights_path:模型权重文件的路径
confidence_thre:0-1,置信度(概率/打分)阈值,即保留概率大于这个值的边界框,默认为0.5
nms_thre:非极大值抑制的阈值,默认为0.3
jpg_quality:设定输出图片的质量,范围为0到100,默认为80,越大质量越好
'''
# 加载类别标签文件
LABELS = open(label_path).read().strip().split("\n")
nclass = len(LABELS)
# 为每个类别的边界框随机匹配相应颜色
np.random.seed(42)
COLORS = np.random.randint(0, 255, size=(nclass, 3), dtype='uint8')
# 载入图片并获取其维度
base_path = os.path.basename(pathIn)
img = cv2.imread(pathIn)
(H, W) = img.shape[:2]
# 加载模型配置和权重文件
print('从硬盘加载YOLO......')
net = cv2.dnn.readNetFromDarknet(config_path, weights_path)
# 获取YOLO输出层的名字
ln = net.getLayerNames()
ln = [ln[i[0] - 1] for i in net.getUnconnectedOutLayers()]
# 将图片构建成一个blob,设置图片尺寸,然后执行一次
# YOLO前馈网络计算,最终获取边界框和相应概率
blob = cv2.dnn.blobFromImage(img, 1 / 255.0, (416, 416), swapRB=True, crop=False)
net.setInput(blob)
start = time.time()
layerOutputs = net.forward(ln)
end = time.time()
# 显示预测所花费时间
print('YOLO模型花费 {:.2f} 秒来预测一张图片'.format(end - start))
# 初始化边界框,置信度(概率)以及类别
boxes = []
confidences = []
classIDs = []
# 迭代每个输出层,总共三个
for output in layerOutputs:
# 迭代每个检测
for detection in output:
# 提取类别ID和置信度
scores = detection[5:]
classID = np.argmax(scores)
confidence = scores[classID]
# 只保留置信度大于某值的边界框
if confidence > confidence_thre:
# 将边界框的坐标还原至与原图片相匹配,记住YOLO返回的是
# 边界框的中心坐标以及边界框的宽度和高度
box = detection[0:4] * np.array([W, H, W, H])
(centerX, centerY, width, height) = box.astype("int")
# 计算边界框的左上角位置
x = int(centerX - (width / 2))
y = int(centerY - (height / 2))
# 更新边界框,置信度(概率)以及类别
boxes.append([x, y, int(width), int(height)])
confidences.append(float(confidence))
classIDs.append(classID)
# 使用非极大值抑制方法抑制弱、重叠边界框
idxs = cv2.dnn.NMSBoxes(boxes, confidences, confidence_thre, nms_thre)
# 确保至少一个边界框
if len(idxs) > 0:
# 迭代每个边界框
for i in idxs.flatten():
# 提取边界框的坐标
(x, y) = (boxes[i][0], boxes[i][1])
(w, h) = (boxes[i][2], boxes[i][3])
# 绘制边界框以及在左上角添加类别标签和置信度
color = [int(c) for c in COLORS[classIDs[i]]]
cv2.rectangle(img, (x, y), (x + w, y + h), color, 2)
text = '{}: {:.3f}'.format(LABELS[classIDs[i]], confidences[i])
(text_w, text_h), baseline = cv2.getTextSize(text, cv2.FONT_HERSHEY_SIMPLEX, 0.5, 2)
cv2.rectangle(img, (x, y-text_h-baseline), (x + text_w, y), color, -1)
cv2.putText(img, text, (x, y-5), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 0, 0), 2)
# 输出结果图片
if pathOut is None:
cv2.imwrite('with_box_'+base_path, img, [int(cv2.IMWRITE_JPEG_QUALITY), jpg_quality])
else:
cv2.imwrite(pathOut, img, [int(cv2.IMWRITE_JPEG_QUALITY), jpg_quality])
## 测试
pathIn = './test_imgs/test1.jpg'
pathOut = './result_imgs/test1.jpg'
yolo_detect(pathIn,pathOut)
运行结果如下:
以上源码可在 https://github.com/FLyingLSJ/Computer_Vision_Project 查看。
从项目到理论,更有趣味!
参考:
https://github.com/scutan90/DeepLearning-500-questions/blob/master/
https://pjreddie.com/darknet/yolo/
https://youtu.be/MPU2HistivI
长按二维码关注我们