- Deepseek 使用指南与提问优化策略
西瓜拍两瓣
ai语言模型pythongpt
序言随着人工智能技术的迅猛发展,语义搜索已成为提升信息检索效率和用户体验的核心工具。DeepSeek作为一款先进的语义搜索引擎,通过自然语言处理(NLP)和机器学习技术,能够深入理解用户查询的语义意图,提供高度精准的搜索结果。本文将详细介绍DeepSeek的核心功能、集成方法,并深入探讨如何通过优化提问策略,最大化利用DeepSeek的语义搜索能力,从而提升信息检索的效率和准确性。访问DeepSe
- 神经网络之CNN文本识别
邪恶的贝利亚
神经网络cnn人工智能
1.参考我的第一篇文章了解CNN概念神经网络之CNN图像识别(torchapi调用)-CSDN博客2.框架目前对NLP的研究分析应用最多的就是RNN系列的框架,比如RNN,GRU,LSTM等等,再加上Attention,基本可以认为是NLP的标配套餐了。但是在文本分类问题上,相比于RNN,CNN的构建和训练更为简单和快速,并且效果也不差,所以仍然会有一些研究。那么,CNN到底是怎么应用到NLP上的
- LLaMA(Meta开源的AI模型)与Ollama(本地运行和管理大模型的工具)简介(注意这俩虽然名字相似但没有直接联系)
Dontla
人工智能大模型LLMllama开源人工智能
文章目录LLaMA**Llama系列模型发展**1.**Llama1(2023年2月)**2.**Llama2(2023年7月)**3.**Llama3(2024年4月)****关键特性**-**开放性**:非商业许可下发布模型权重,促进研究社区发展[⁴](https://zh.wikipedia.org/zh-hans/LLaMA)。-**性能优势**:在NLP基准测试中表现优异,例如代码生成任
- 【深度学习】Hopfield网络:模拟联想记忆
T-I-M
深度学习人工智能
Transformer优化,什么是稀疏注意力?Transformer模型自2017年被提出以来,已经成为自然语言处理(NLP)领域的核心架构,并在计算机视觉、语音处理等其他领域也取得了显著的成功。然而,随着模型规模的不断增大和任务复杂性的提升,Transformer的计算成本和内存需求也随之激增。为了解决这一问题,研究者们提出了多种优化方法,其中稀疏注意力(SparseAttention)是一种备
- 完整指南:从基础到高级使用 Semantic Kernel
江沉晚呤时
NetcoreAIc#.netcore
SemanticKernel是微软推出的一款强大的开发框架,旨在帮助开发者通过语义理解和自然语言处理(NLP)构建智能应用。它为开发者提供了与OpenAI、AzureCognitiveServices等人工智能服务集成的简便接口,使得构建自然语言处理(NLP)应用变得更加直观和高效。在本文中,我们将从基础到高级全面讲解如何使用SemanticKernel,并提供详细的代码示例,帮助你快速掌握这个框
- 【NLP面试】大模型(NLP)岗位最新高频面题和面试经验总结,一定不要错过!!!(★思维导图版★)
青松ᵃⁱ
NLP百面百过自然语言处理面试人工智能
【NLP面试】大模型(NLP)岗位最新高频面题和面试经验总结,一定不要错过!!!(★思维导图版★)嗨,你好,我是青松!自小刺头深草里,而今渐觉出蓬蒿。NLPGithub项目推荐:【AI藏经阁】:https://gitee.com/fasterai/ai-e-book介绍:该仓库主要分享了数百本AI领域电子书【AI算法面经】:fasterai/nlp-interview-handbook#面经介绍:
- NLP自然语言处理——文本处理的基本方法
小村学长毕业设计
自然语言处理人工智能
NLP(自然语言处理)是人工智能领域的一个重要分支,它专注于使计算机能够理解和生成人类语言。文本处理是NLP中的基础且核心的部分,涉及多个步骤和技术,以确保原始文本数据能够被有效地转换、分析和利用。以下是对文本处理基本方法的详细探讨,包括文本预处理、文本表示、以及常见的NLP任务等。一、文本预处理文本预处理是NLP中的第一步,也是至关重要的一步。它主要包括以下几个子步骤:文本清洗:去除特殊字符:移
- NLP自然语言处理:文本表示总结 - 上篇word embedding(基于降维、基于聚类、CBOW 、Skip-gram、 NNLM 、TF-ID、GloVe )
陈宸-研究僧
NLP自然语言处理
文本表示分类(基于表示方法)离散表示one-hot表示词袋模型与TF-ID分布式表示基于矩阵的表示方法降维的方法聚类的方法基于神经网络的表示方法NNLMCBOWSkip-gramGloVeELMoGPTBERT目录一、文本离散表示1.1文本离散表示:one-hot1.2文本离散表示:词袋模型与TF-IDF1.2.1词袋模型(bagofwords)1.2.2对词袋模型的改进:TF-IDF二、文本分布
- 自然语言处理:文本表示
梦丶晓羽
pythonGloveWord2VecTF-IDF自然语言处理人工智能
介绍大家好,博主又来给大家分享知识了。今天给大家分享的内容是自然语言处理中的文本表示。在当今数字化信息爆炸的时代,自然语言处理作为人工智能领域的重要分支,发挥着越来越关键的作用。而文本表示,则是自然语言处理的基石之一,它就像是一把神奇的钥匙,能够将人类丰富多样、充满语义的自然语言,转化为计算机可以理解和处理的形式。话不多说,我们直接进入正题。文本表示概念阐述在自然语言处理(NLP)中,文本表示是将
- XLNet:超越BERT的新星
AI天才研究院
DeepSeekR1&大数据AI人工智能大模型AI大模型企业级应用开发实战计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
-XLNet:超越BERT的新星1.背景介绍1.1自然语言处理的重要性自然语言处理(NaturalLanguageProcessing,NLP)是人工智能领域的一个重要分支,旨在使计算机能够理解和生成人类语言。随着大数据时代的到来,海量的自然语言数据不断涌现,对NLP技术的需求与日俱增。NLP技术已广泛应用于机器翻译、智能问答、信息检索、情感分析等诸多领域,为人类生产和生活带来了巨大便利。1.2预
- 【AI大模型】Transformers大模型库(九):大模型微调之计算微调参数占比
LDG_AGI
人工智能
目录一、引言二、计算微调参数占比2.1概述2.2模型参数结构一览2.3微调参数占比计算三、总结一、引言这里的Transformers指的是huggingface开发的大模型库,为huggingface上数以万计的预训练大模型提供预测、训练等服务。Transformers提供了数以千计的预训练模型,支持100多种语言的文本分类、信息抽取、问答、摘要、翻译、文本生成。它的宗旨是让最先进的NLP技术人人
- Transformer模型详解
Yuki-^_^
Transformer模型详解人工智能transformer深度学习人工智能
导读Transformer在许多的人工智能领域,如自然语言处理(NaturalLanguageProcessing,NLP)、计算机视觉(ComputerVision,CV)和语音处理(SpeechProcessing,SP)取得了巨大的成功。因此,自然而然的也吸引了许多工业界和学术界的研究人员的兴趣。到目前为止,已经提出了大量基于Transformer的相关工作和综述。本文基于邱锡鹏[1]老师近
- AIGC从入门到实战:探秘:ChatGPT 到底是什么
AI天才研究院
计算AI大模型企业级应用开发实战ChatGPT计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
1.背景介绍1.1人工智能的浪潮近年来,人工智能(AI)发展迅猛,其应用已深入到各个领域,从自动驾驶汽车到智能家居,再到医疗诊断,AI正在改变我们的生活方式。其中,自然语言处理(NLP)作为AI的重要分支,近年来取得了显著进展,而AIGC(AI-GeneratedContent)正是NLP领域的一颗璀璨明珠。1.2AIGC的兴起AIGC指的是利用AI技术自动生成内容,包括文本、图像、音频、视频等。
- 2W8000字 LLM架构文章阅读指北
人工智能
大模型架构专栏已经更新了30多篇文章。完整的专栏内容欢迎订阅:LLM架构专栏1、LLM大模型架构专栏||从NLP基础谈起2、LLM大模型架构专栏||自然语言处理(NLP)之建模3、LLM大模型架构之词嵌入(Part1)3、LLM大模型架构之词嵌入(Part2)3、LLM大模型架构之词嵌入(Part3)4、LLM架构从基础到精通之Word2Vec训练全解析5、LLM架构从基础到精通之循环神经网络(R
- 自然语言处理之语法解析:BERT:自然语言处理基础理论
zhubeibei168
自然语言处理1024程序员节自然语言处理bert语音识别人工智能
自然语言处理之语法解析:BERT:自然语言处理基础理论自然语言处理基础自然语言处理的定义与应用自然语言处理(NaturalLanguageProcessing,NLP)是计算机科学领域与人工智能领域中的一个重要方向。它研究如何处理和运用自然语言;自然语言认知则是指让计算机“懂”人类的语言。NLP建立于20世纪50年代,随着计算机技术的飞速发展,NLP技术在信息检索、文本挖掘、语音识别、机器翻译、情
- DeepSeek应用场景及其解决的问题
杏花春雨江南
自然语言处理
DeepSeek是一种基于深度学习的智能技术,能够处理复杂的非结构化数据(如文本、图像、语音等),并在企业级应用开发中发挥重要作用。以下是DeepSeek在企业级应用开发中的典型应用场景及其解决的问题:1.企业知识管理与智能搜索场景:企业拥有大量的文档、报告、邮件、会议记录等非结构化数据,员工需要快速找到相关信息。DeepSeek的作用:通过语义搜索和自然语言处理(NLP),DeepSeek可以理
- 在nodejs中使用ElasticSearch(三)通过ES语义检索,实现RAG
konglong127
nodejselasticsearch搜索引擎node.js全文检索后端
RAG(Retrieval-AugmentedGeneration)是一种结合了信息检索和生成模型的技术,旨在提高生成模型的知识获取和生成能力。它通过在生成的过程中引入外部知识库或文档(如数据库、搜索引擎或文档存储),帮助生成更为准确和丰富的答案。RAG在自然语言处理(NLP)领域,特别是在对话生成、问答系统和文本摘要等任务中,具有非常重要的应用。它的核心思想是,生成模型不仅依赖于模型内部的知识,
- 穿越AI边界:深度集成DeepSeek API与云平台的实践之路
云边有个稻草人
热门文章人工智能DeepSeek大数据集成DeepSeekAPIDeepSeek算法阿里云百炼平台集成
云边有个稻草人-CSDN博客随着人工智能技术的日益发展,深度学习和自然语言处理(NLP)已经在很多领域得到了广泛的应用。DeepSeek作为一款领先的大型语言生成模型,凭借其强大的推理和生成能力,已经被越来越多的开发者和行业专家所青睐。通过DeepSeek提供的API接口,开发者可以在多个领域中实现先进的自然语言理解和生成任务。本文将深入探讨如何使用Python调用DeepSeek的API接口,并
- 自然语言处理NLP入门 -- 第八节OpenAI GPT 在 NLP 任务中的应用
山海青风
人工智能gpt自然语言处理python
在前面的学习中,我们已经了解了如何使用一些经典的方法和模型来处理自然语言任务,如文本分类、命名实体识别等。但当我们需要更强的语言生成能力时,往往会求助于更先进的预训练语言模型。OpenAI旗下的GPT系列模型(如GPT-3、GPT-3.5、GPT-4等)在生成文本方面拥有强大的表现。它们不仅能进行语言生成,也可用于诸多NLP任务,包括文本摘要和情感分析。本章将重点介绍:GPT的文本生成原理和应用场
- DeepSeek怎么用,DeepSeek使用指南最全合集(保姆级教程)
xiecoding.cn
deepseekdeepseek使用指南deepseek怎么用deepseek免费教学deepseek资料合集
DeepSeek是一款由国内顶尖团队开发的人工智能大模型,旨在为用户提供高效、智能的问答和知识服务。作为国产AI模型的代表,DeepSeek不仅在自然语言处理(NLP)领域表现出色,还在多个应用场景中展现了强大的能力。与ChatGPT等国际知名模型相比,DeepSeek在中文语境下的表现尤为突出,能够更好地理解中文的复杂语义和文化背景。DeepSeek使用资源下载为了方便大家更好地学习和使用Dee
- J-LangChain,用Java实现LangChain编排!轻松加载PDF、切分文档、向量化存储,再到智能问答
花千树-010
JLangChain-TGlangchainjavapdfAIGCnlpAI编程
Java如何玩转大模型编排、RAG、Agent???在自然语言处理(NLP)的浪潮中,LangChain作为一种强大的模型编排框架,已经在Python社区中广受欢迎。然而,对于Java开发者来说,能否有一个同样高效、灵活的工具来实现类似功能?答案是肯定的!今天,我们将聚焦J-LangChain——一个专为Java打造的LangChain实现,带你探索如何用Java语言轻松构建从PDF处理到智能问答
- LangChain教程 - RAG - PDF问答
花千树-010
LangChainlangchainpdfAIGCpythonnlpembedding人工智能
系列文章索引LangChain教程-系列文章在现代自然语言处理(NLP)中,基于文档内容的问答系统变得愈发重要,尤其是当我们需要从大量文档中提取信息时。通过结合文档检索和生成模型(如RAG,Retrieval-AugmentedGeneration),我们可以构建强大的问答系统。本博客将详细介绍如何使用FastAPI和LangChain框架,创建一个基于PDF文档的RAG问答API。一、背景在许多
- 深度学习开源数据集大全:从入门到前沿
念九_ysl
AI人工智能
在深度学习中,数据是模型训练的基石。本文整理了当前最常用且高质量的开源数据集,涵盖图像、视频、自然语言处理(NLP)、语音与音频等方向,帮助研究者和开发者快速定位所需资源。一、图像类数据集1.MNIST简介:手写数字识别领域的“HelloWorld”,包含6万张训练图像和1万张测试图像,尺寸为28×28的灰度图。特点:适合入门级图像分类任务,支持快速验证算法原型28。下载地址:MNIST官网2.I
- 揭开人工智能中 Tokens 的神秘面纱
东锋1.3
人工智能easyui前端javascript
揭开人工智能中Tokens的神秘面纱在人工智能,尤其是自然语言处理(NLP)领域,"tokens"是一个频繁出现且至关重要的概念。对于理解语言模型如何处理和理解人类语言,tokens起着基础性的作用。那么,究竟什么是tokens呢?它又在人工智能系统中扮演着怎样关键的角色?让我们一探究竟。什么是Tokens简单来说,tokens是将文本分割成的一个个基本单元。当我们输入一段文字时,人工智能模型不会
- 自然语言处理NLP入门 -- 第十节简单的聊天机器人
山海青风
#自然语言处理自然语言处理chatgpt
一、为什么要做聊天机器人?在互联网时代,我们日常接触到的“在线客服”“自动问答”等,大多是以聊天机器人的形式出现。它能帮我们快速回复常见问题,让用户获得及时的帮助,并在一定程度上减少人工客服的压力。同时,聊天机器人也是了解自然语言处理(NLP)最好的实战项目之一。因为它整合了文字理解(NLU)、对话管理、文本生成(NLG)等多方面知识,既能看到很直观的对话效果,也能结合深度学习模型让机器人变得更智
- 自然语言处理NLP入门 -- 第一节基础概念
山海青风
#自然语言处理自然语言处理人工智能python
本部分主要介绍NLP的基础概念,并通过实际案例演示NLP的核心任务,同时引导你搭建NLP开发环境,确保你能顺利开始后续学习。1.什么是自然语言处理(NLP)1.1NLP的定义自然语言处理(NaturalLanguageProcessing,NLP)是人工智能(AI)的一个子领域,专注于让计算机理解、解释和生成人类语言。NLP结合了计算机科学、语言学和机器学习,以便计算机能自动处理文本和语音数据。简
- 【大模型】大模型分类
IT古董
人工智能人工智能大模型
大模型(LargeModels)通常指参数量巨大、计算能力强大的机器学习模型,尤其在自然语言处理(NLP)、计算机视觉(CV)等领域表现突出。以下是大模型的常见分类方式:1.按应用领域分类自然语言处理(NLP)模型如GPT-3、BERT、T5等,主要用于文本生成、翻译、问答等任务。计算机视觉(CV)模型如ResNet、EfficientNet、VisionTransformer(ViT)等,用于图
- 全网国内外总结Prompt&LLM论文,开源数据&模型,AIGC应用(持续更新,收藏查看)
代码讲故事
智能工具PromptLLMAIGC模型开源数据集深度学习
全网国内外总结Prompt&LLM论文,开源数据&模型,AIGC应用(持续更新,收藏查看)目录顺序如下国内外,垂直领域大模型Agent和指令微调等训练框架开源指令,预训练,rlhf,对话,agent训练数据梳理AIGC相关应用prompt写作指南和5星博客等资源梳理Prompt和LLM论文细分方向梳理Prompt是在自然语言处理(NLP)中,尤其是在使用预训练语言模型时,用来引导模型生成特定类型输
- 机器学习AI/ML/CV/NLP/GNN算法公式汇总Latex代码
rockingdingo
tensorflow大数据自然语言处理算法深度学习机器学习
图学习和LinkPrediction任务KnowledgeGraphLinkPredictionEquationsAndLatexCodehttp://www.deepnlp.org/blog/knowledge-graph-link-prediction小样本学习和零样本学习公式的Latex代Few-ShotLearningAndZero-ShotLearningEquationsLatexCo
- 饿了么算法工程师-AIGC岗内推
飞300
AIGC业界资讯
1、紧跟业界最新自然语言处理技术动态,深入研发并努力创新,特别是在LLM、多模态理解和LLMAgent领域。2、基于大型语言模型开展文本生成、自然语言理解以及智能对话系统的研发,提出新颖的算法/模型,并进行实际开发和应用。3、探索多模态数据的结合,包括图像、文本、语音等,以丰富智能系统的理解和交互能力。4、将自然语言处理技术与具体业务场景相结合,考虑业务的特殊性并适配业务需求。参与到具体的NLP相
- Java常用排序算法/程序员必须掌握的8大排序算法
cugfy
java
分类:
1)插入排序(直接插入排序、希尔排序)
2)交换排序(冒泡排序、快速排序)
3)选择排序(直接选择排序、堆排序)
4)归并排序
5)分配排序(基数排序)
所需辅助空间最多:归并排序
所需辅助空间最少:堆排序
平均速度最快:快速排序
不稳定:快速排序,希尔排序,堆排序。
先来看看8种排序之间的关系:
1.直接插入排序
(1
- 【Spark102】Spark存储模块BlockManager剖析
bit1129
manager
Spark围绕着BlockManager构建了存储模块,包括RDD,Shuffle,Broadcast的存储都使用了BlockManager。而BlockManager在实现上是一个针对每个应用的Master/Executor结构,即Driver上BlockManager充当了Master角色,而各个Slave上(具体到应用范围,就是Executor)的BlockManager充当了Slave角色
- linux 查看端口被占用情况详解
daizj
linux端口占用netstatlsof
经常在启动一个程序会碰到端口被占用,这里讲一下怎么查看端口是否被占用,及哪个程序占用,怎么Kill掉已占用端口的程序
1、lsof -i:port
port为端口号
[root@slave /data/spark-1.4.0-bin-cdh4]# lsof -i:8080
COMMAND PID USER FD TY
- Hosts文件使用
周凡杨
hostslocahost
一切都要从localhost说起,经常在tomcat容器起动后,访问页面时输入http://localhost:8088/index.jsp,大家都知道localhost代表本机地址,如果本机IP是10.10.134.21,那就相当于http://10.10.134.21:8088/index.jsp,有时候也会看到http: 127.0.0.1:
- java excel工具
g21121
Java excel
直接上代码,一看就懂,利用的是jxl:
import java.io.File;
import java.io.IOException;
import jxl.Cell;
import jxl.Sheet;
import jxl.Workbook;
import jxl.read.biff.BiffException;
import jxl.write.Label;
import
- web报表工具finereport常用函数的用法总结(数组函数)
老A不折腾
finereportweb报表函数总结
ADD2ARRAY
ADDARRAY(array,insertArray, start):在数组第start个位置插入insertArray中的所有元素,再返回该数组。
示例:
ADDARRAY([3,4, 1, 5, 7], [23, 43, 22], 3)返回[3, 4, 23, 43, 22, 1, 5, 7].
ADDARRAY([3,4, 1, 5, 7], "测试&q
- 游戏服务器网络带宽负载计算
墙头上一根草
服务器
家庭所安装的4M,8M宽带。其中M是指,Mbits/S
其中要提前说明的是:
8bits = 1Byte
即8位等于1字节。我们硬盘大小50G。意思是50*1024M字节,约为 50000多字节。但是网宽是以“位”为单位的,所以,8Mbits就是1M字节。是容积体积的单位。
8Mbits/s后面的S是秒。8Mbits/s意思是 每秒8M位,即每秒1M字节。
我是在计算我们网络流量时想到的
- 我的spring学习笔记2-IoC(反向控制 依赖注入)
aijuans
Spring 3 系列
IoC(反向控制 依赖注入)这是Spring提出来了,这也是Spring一大特色。这里我不用多说,我们看Spring教程就可以了解。当然我们不用Spring也可以用IoC,下面我将介绍不用Spring的IoC。
IoC不是框架,她是java的技术,如今大多数轻量级的容器都会用到IoC技术。这里我就用一个例子来说明:
如:程序中有 Mysql.calss 、Oracle.class 、SqlSe
- 高性能mysql 之 选择存储引擎(一)
annan211
mysqlInnoDBMySQL引擎存储引擎
1 没有特殊情况,应尽可能使用InnoDB存储引擎。 原因:InnoDB 和 MYIsAM 是mysql 最常用、使用最普遍的存储引擎。其中InnoDB是最重要、最广泛的存储引擎。她 被设计用来处理大量的短期事务。短期事务大部分情况下是正常提交的,很少有回滚的情况。InnoDB的性能和自动崩溃 恢复特性使得她在非事务型存储的需求中也非常流行,除非有非常
- UDP网络编程
百合不是茶
UDP编程局域网组播
UDP是基于无连接的,不可靠的传输 与TCP/IP相反
UDP实现私聊,发送方式客户端,接受方式服务器
package netUDP_sc;
import java.net.DatagramPacket;
import java.net.DatagramSocket;
import java.net.Ine
- JQuery对象的val()方法执行结果分析
bijian1013
JavaScriptjsjquery
JavaScript中,如果id对应的标签不存在(同理JAVA中,如果对象不存在),则调用它的方法会报错或抛异常。在实际开发中,发现JQuery在id对应的标签不存在时,调其val()方法不会报错,结果是undefined。
- http请求测试实例(采用json-lib解析)
bijian1013
jsonhttp
由于fastjson只支持JDK1.5版本,因些对于JDK1.4的项目,可以采用json-lib来解析JSON数据。如下是http请求的另外一种写法,仅供参考。
package com;
import java.util.HashMap;
import java.util.Map;
import
- 【RPC框架Hessian四】Hessian与Spring集成
bit1129
hessian
在【RPC框架Hessian二】Hessian 对象序列化和反序列化一文中介绍了基于Hessian的RPC服务的实现步骤,在那里使用Hessian提供的API完成基于Hessian的RPC服务开发和客户端调用,本文使用Spring对Hessian的集成来实现Hessian的RPC调用。
定义模型、接口和服务器端代码
|---Model
&nb
- 【Mahout三】基于Mahout CBayes算法的20newsgroup流程分析
bit1129
Mahout
1.Mahout环境搭建
1.下载Mahout
http://mirror.bit.edu.cn/apache/mahout/0.10.0/mahout-distribution-0.10.0.tar.gz
2.解压Mahout
3. 配置环境变量
vim /etc/profile
export HADOOP_HOME=/home
- nginx负载tomcat遇非80时的转发问题
ronin47
nginx负载后端容器是tomcat(其它容器如WAS,JBOSS暂没发现这个问题)非80端口,遇到跳转异常问题。解决的思路是:$host:port
详细如下:
该问题是最先发现的,由于之前对nginx不是特别的熟悉所以该问题是个入门级别的:
? 1 2 3 4 5
- java-17-在一个字符串中找到第一个只出现一次的字符
bylijinnan
java
public class FirstShowOnlyOnceElement {
/**Q17.在一个字符串中找到第一个只出现一次的字符。如输入abaccdeff,则输出b
* 1.int[] count:count[i]表示i对应字符出现的次数
* 2.将26个英文字母映射:a-z <--> 0-25
* 3.假设全部字母都是小写
*/
pu
- mongoDB 复制集
开窍的石头
mongodb
mongo的复制集就像mysql的主从数据库,当你往其中的主复制集(primary)写数据的时候,副复制集(secondary)会自动同步主复制集(Primary)的数据,当主复制集挂掉以后其中的一个副复制集会自动成为主复制集。提供服务器的可用性。和防止当机问题
mo
- [宇宙与天文]宇宙时代的经济学
comsci
经济
宇宙尺度的交通工具一般都体型巨大,造价高昂。。。。。
在宇宙中进行航行,近程采用反作用力类型的发动机,需要消耗少量矿石燃料,中远程航行要采用量子或者聚变反应堆发动机,进行超空间跳跃,要消耗大量高纯度水晶体能源
以目前地球上国家的经济发展水平来讲,
- Git忽略文件
Cwind
git
有很多文件不必使用git管理。例如Eclipse或其他IDE生成的项目文件,编译生成的各种目标或临时文件等。使用git status时,会在Untracked files里面看到这些文件列表,在一次需要添加的文件比较多时(使用git add . / git add -u),会把这些所有的未跟踪文件添加进索引。
==== ==== ==== 一些牢骚
- MySQL连接数据库的必须配置
dashuaifu
mysql连接数据库配置
MySQL连接数据库的必须配置
1.driverClass:com.mysql.jdbc.Driver
2.jdbcUrl:jdbc:mysql://localhost:3306/dbname
3.user:username
4.password:password
其中1是驱动名;2是url,这里的‘dbna
- 一生要养成的60个习惯
dcj3sjt126com
习惯
一生要养成的60个习惯
第1篇 让你更受大家欢迎的习惯
1 守时,不准时赴约,让别人等,会失去很多机会。
如何做到:
①该起床时就起床,
②养成任何事情都提前15分钟的习惯。
③带本可以随时阅读的书,如果早了就拿出来读读。
④有条理,生活没条理最容易耽误时间。
⑤提前计划:将重要和不重要的事情岔开。
⑥今天就准备好明天要穿的衣服。
⑦按时睡觉,这会让按时起床更容易。
2 注重
- [介绍]Yii 是什么
dcj3sjt126com
PHPyii2
Yii 是一个高性能,基于组件的 PHP 框架,用于快速开发现代 Web 应用程序。名字 Yii (读作 易)在中文里有“极致简单与不断演变”两重含义,也可看作 Yes It Is! 的缩写。
Yii 最适合做什么?
Yii 是一个通用的 Web 编程框架,即可以用于开发各种用 PHP 构建的 Web 应用。因为基于组件的框架结构和设计精巧的缓存支持,它特别适合开发大型应
- Linux SSH常用总结
eksliang
linux sshSSHD
转载请出自出处:http://eksliang.iteye.com/blog/2186931 一、连接到远程主机
格式:
ssh name@remoteserver
例如:
ssh
[email protected]
二、连接到远程主机指定的端口
格式:
ssh name@remoteserver -p 22
例如:
ssh i
- 快速上传头像到服务端工具类FaceUtil
gundumw100
android
快速迭代用
import java.io.DataOutputStream;
import java.io.File;
import java.io.FileInputStream;
import java.io.FileNotFoundException;
import java.io.FileOutputStream;
import java.io.IOExceptio
- jQuery入门之怎么使用
ini
JavaScripthtmljqueryWebcss
jQuery的强大我何问起(个人主页:hovertree.com)就不用多说了,那么怎么使用jQuery呢?
首先,下载jquery。下载地址:http://hovertree.com/hvtart/bjae/b8627323101a4994.htm,一个是压缩版本,一个是未压缩版本,如果在开发测试阶段,可以使用未压缩版本,实际应用一般使用压缩版本(min)。然后就在页面上引用。
- 带filter的hbase查询优化
kane_xie
查询优化hbaseRandomRowFilter
问题描述
hbase scan数据缓慢,server端出现LeaseException。hbase写入缓慢。
问题原因
直接原因是: hbase client端每次和regionserver交互的时候,都会在服务器端生成一个Lease,Lease的有效期由参数hbase.regionserver.lease.period确定。如果hbase scan需
- java设计模式-单例模式
men4661273
java单例枚举反射IOC
单例模式1,饿汉模式
//饿汉式单例类.在类初始化时,已经自行实例化
public class Singleton1 {
//私有的默认构造函数
private Singleton1() {}
//已经自行实例化
private static final Singleton1 singl
- mongodb 查询某一天所有信息的3种方法,根据日期查询
qiaolevip
每天进步一点点学习永无止境mongodb纵观千象
// mongodb的查询真让人难以琢磨,就查询单天信息,都需要花费一番功夫才行。
// 第一种方式:
coll.aggregate([
{$project:{sendDate: {$substr: ['$sendTime', 0, 10]}, sendTime: 1, content:1}},
{$match:{sendDate: '2015-
- 二维数组转换成JSON
tangqi609567707
java二维数组json
原文出处:http://blog.csdn.net/springsen/article/details/7833596
public class Demo {
public static void main(String[] args) { String[][] blogL
- erlang supervisor
wudixiaotie
erlang
定义supervisor时,如果是监控celuesimple_one_for_one则删除children的时候就用supervisor:terminate_child (SupModuleName, ChildPid),如果shutdown策略选择的是brutal_kill,那么supervisor会调用exit(ChildPid, kill),这样的话如果Child的behavior是gen_