求解二维和三维法向量的方法

二维曲线法向量的求解示例:

Here's an example using an analytic curve of y = x^2


   
   
   
   
  1. x = 0: 0.1: 1;
  2. y = x.*x;
  3. dy = gradient(y);
  4. dx = gradient(x);
  5. quiver(x,y,-dy,dx)
  6. hold on; plot( x, y)

which gives:

三维三角面片顶点法向量的求解:顶点相邻各个三角面片单位法向量的叠加。

http://www.lighthouse3d.com/opengl/terrain/index.php3?normals

The normal at a vertex should be computed as the normalised sum of all the unit length normals for each face the vertex shares. Consider the following image:

求解二维和三维法向量的方法_第1张图片

In the above image, v represents the normal at the center vertex. Each vij represents a normal for each face that shares the center vertex. So for instance v12 is the unit lenght normal for the bottom right face.

The vertex normal v is computed as the normalised sum of all vij vectors:


    
   
   
   
   
  1. v = normalised(sum(v12, v23, v34, v41))
  2. where
  3. vij = normalised(vi x vj) // normalised cross product


你可能感兴趣的:(三维立体重建)