Task04图像滤波

Datawhale 计算机视觉基础-图像处理(上)-Task04 图像滤波

4.1 简介

图像的实质是一种二维信号,滤波是信号处理中的一个重要概念。在图像处理中,滤波是一种非常常见的技术,它们的原理非常简单,但是其思想却十分值得借鉴,滤波是很多图像算法的前置步骤或基础,掌握图像滤波对理解卷积神经网络也有一定帮助。

4.2 学习目标

  • 了解图像滤波的分类和基本概念

  • 理解均值滤波/方框滤波、高斯滤波的原理

  • 掌握OpenCV框架下滤波API的使用

4.3 内容介绍

1、均值滤波/方框滤波、高斯滤波的原理

2、OpenCV代码实践

3、动手实践并打卡(读者完成)

4.4 算法理论介绍

4.4.1 均值滤波、方框滤波

1. 滤波分类

线性滤波: 对邻域中的像素的计算为线性运算时,如利用窗口函数进行平滑加权求和的运算,或者某种卷积运算,都可以称为线性滤波。常见的线性滤波有:均值滤波、高斯滤波、盒子滤波、拉普拉斯滤波等等,通常线性滤波器之间只是模版系数不同。

非线性滤波: 非线性滤波利用原始图像跟模版之间的一种逻辑关系得到结果,如最值滤波器,中值滤波器。比较常用的有中值滤波器和双边滤波器。

2. 方框(盒子)滤波

方框滤波是一种非常有用的线性滤波,也叫盒子滤波,均值滤波就是盒子滤波归一化的特殊情况。
应用: 可以说,一切需要求某个邻域内像素之和的场合,都有方框滤波的用武之地,比如:均值滤波、引导滤波、计算Haar特征等等。

优势: 就一个字:快!它可以使复杂度为O(MN)的求和,求方差等运算降低到O(1)或近似于O(1)的复杂度,也就是说与邻域尺寸无关了,有点类似积分图吧,但是比积分图更快(与它的实现方式有关)。

在原理上,是采用一个卷积核与图像进行卷积:

其中:

可见,归一化了就是均值滤波;不归一化则可以计算每个像素邻域上的各种积分特性,方差、协方差,平方和等等。

3. 均值滤波

均值滤波的应用场合:
根据冈萨雷斯书中的描述,均值模糊可以模糊图像以便得到感兴趣物体的粗略描述,也就是说,去除图像中的不相关细节,其中“不相关”是指与滤波器模板尺寸相比较小的像素区域,从而对图像有一个整体的认知。即为了对感兴趣的物体得到一个大致的整体的描述而模糊一幅图像,忽略细小的细节。

均值滤波的缺陷:
均值滤波本身存在着固有的缺陷,即它不能很好地保护图像细节,在图像去噪的同时也破坏了图像的细节部分,从而使图像变得模糊,不能很好地去除噪声点。特别是椒盐噪声。

均值滤波是上述方框滤波的特殊情况,均值滤波方法是:对待处理的当前像素,选择一个模板,该模板为其邻近的若干个像素组成,用模板的均值(方框滤波归一化)来替代原像素的值。公式表示为:

g(x,y)为该邻域的中心像素,n跟系数模版大小有关,一般3*3邻域的模板,n取为9,如:

当然,模板是可变的,一般取奇数,如5 * 5 , 7 * 7等等。

注:在实际处理过程中可对图像边界进行扩充,扩充为0或扩充为邻近的像素值。

4.4.1 高斯滤波

应用: 高斯滤波是一种线性平滑滤波器,对于服从正态分布的噪声有很好的抑制作用。在实际场景中,我们通常会假定图像包含的噪声为高斯白噪声,所以在许多实际应用的预处理部分,都会采用高斯滤波抑制噪声,如传统车牌识别等。

高斯滤波和均值滤波一样,都是利用一个掩膜和图像进行卷积求解。不同之处在于:均值滤波器的模板系数都是相同的为1,而高斯滤波器的模板系数,则随着距离模板中心的增大而系数减小(服从二维高斯分布)。所以,高斯滤波器相比于均值滤波器对图像个模糊程度较小,更能够保持图像的整体细节。

二维高斯分布
高斯分布公式终于要出场了!

在这里插入图片描述
其中不必纠结于系数,因为它只是一个常数!并不会影响互相之间的比例关系,并且最终都要进行归一化,所以在实际计算时我们是忽略它而只计算后半部分:
在这里插入图片描述
其中(x,y)为掩膜内任一点的坐标,(ux,uy)为掩膜内中心点的坐标,在图像处理中可认为是整数;σ是标准差。

例如:要产生一个3×3的高斯滤波器模板,以模板的中心位置为坐标原点进行取样。模板在各个位置的坐标,如下所示(x轴水平向右,y轴竖直向下)。
Task04图像滤波_第1张图片
这样,将各个位置的坐标带入到高斯函数中,得到的值就是模板的系数。
对于窗口模板的大小为 (2k+1)×(2k+1),模板中各个元素值的计算公式如下:

在这里插入图片描述
这样计算出来的模板有两种形式:小数和整数。

  • 小数形式的模板,就是直接计算得到的值,没有经过任何的处理;
  • 整数形式的,则需要进行归一化处理,将模板左上角的值归一化为1,具体介绍请看这篇博文。使用整数的模板时,需要在模板的前面加一个系数,系数为模板系数和的倒数。

生成高斯掩膜(小数形式)
知道了高斯分布原理,实现起来也就不困难了。

首先我们要确定我们生产掩模的尺寸wsize,然后设定高斯分布的标准差。生成的过程,我们首先根据模板的大小,找到模板的中心位置center。 然后就是遍历,根据高斯分布的函数,计算模板中每个系数的值。

最后模板的每个系数要除以所有系数的和。这样就得到了小数形式的模板。

///////////////////////////////
//x,y方向联合实现获取高斯模板
//////////////////////////////
void generateGaussMask(cv::Mat& Mask,cv::Size wsize, double sigma){
	Mask.create(wsize,CV_64F);
	int h = wsize.height;
	int w = wsize.width;
	int center_h = (h - 1) / 2;
	int center_w = (w - 1) / 2;
	double sum = 0.0;
	double x, y;
	for (int i = 0; i < h; ++i){
		y = pow(i - center_h, 2);
		for (int j = 0; j < w; ++j){
			x = pow(j - center_w, 2);
			//因为最后都要归一化的,常数部分可以不计算,也减少了运算量
			double g = exp(-(x + y) / (2 * sigma*sigma));
			Mask.at<double>(i, j) = g;
			sum += g;
		}
	}
	Mask = Mask / sum;
}

3×3,σ=0.8的小数型模板:
在这里插入图片描述
σ的意义及选取
通过上述的实现过程,不难发现,高斯滤波器模板的生成最重要的参数就是高斯分布的标准差σ。标准差代表着数据的离散程度,如果σ较小,那么生成的模板的中心系数较大,而周围的系数较小,这样对图像的平滑效果就不是很明显;反之,σ较大,则生成的模板的各个系数相差就不是很大,比较类似均值模板,对图像的平滑效果比较明显。

来看下一维高斯分布的概率分布密度图:
Task04图像滤波_第2张图片
于是我们有如下结论:σ越小分布越瘦高,σ越大分布越矮胖。

  • σ越大,分布越分散,各部分比重差别不大,于是生成的模板各元素值差别不大,类似于平均模板;
  • σ越小,分布越集中,中间部分所占比重远远高于其他部分,反映到高斯模板上就是中心元素值远远大于其他元素值,于是自然而然就相当于中间值得点运算。

4.5 基于OpenCV的实现

  • 工具:OpenCV3.1.0+VS2013
  • 平台:WIN10

函数原型(c++)

1.方框滤波

void boxFilter( InputArray src, OutputArray dst, 
                int ddepth,
                Size ksize,  
                Point anchor = Point(-1,-1),
                bool normalize = true,
                int borderType = BORDER_DEFAULT );

参数:

  • src – input image.
  • dst – output image of the same size and type as src.
  • ddepth – the output image depth (-1 to use src.depth()).
  • ksize – blurring kernel size. anchor
  • anchor point; default value Point(-1,-1) means that the anchor is at the kernel center.
  • normalize – flag, specifying whether the kernel is normalized by its area or not.
  • borderType – border mode used to extrapolate pixels outside of the image. 可参考:cv::BorderTypes

2.均值滤波

void cv::blur	(	InputArray 	src,
                    OutputArray dst,
                       Size 	ksize,
                      Point 	anchor = Point(-1,-1),
                       int 	  borderType = BORDER_DEFAULT 
)	

参数:

  • src – input image; it can have any number of channels, which are processed independently, but the
  • depth – should be CV_8U, CV_16U, CV_16S, CV_32F or CV_64F.
  • dst – output image of the same size and type as src.
  • ksize – blurring kernel size.
  • anchor – anchor point; default value Point(-1,-1) means that the anchor is at the kernel center.
  • borderType – border mode used to extrapolate pixels outside of the image,可参考:cv::BorderTypes

2.高斯滤波

void GaussianBlur(InputArray src, OutputArray dst, 
                  Size ksize, 
                  double sigmaX, double sigmaY=0,
                  int borderType=BORDER_DEFAULT )

参数:

  • src — input image; the image can have any number of channels, which are processed independently, but the depth should be CV_8U, CV_16U, CV_16S, CV_32F or CV_64F.
  • dst — output image of the same size and type as src.
  • ksize Gaussian kernel size. ksize.width and ksize.height can differ but they both must be positive and odd. Or, they can be zero’s and then they are computed from sigma.
  • sigmaX — Gaussian kernel standard deviation in X direction.
  • sigmaY — Gaussian kernel standard deviation in Y direction; if sigmaY is zero, it is set to be equal to sigmaX, if both sigmas are zeros, they are computed from ksize.width and ksize.height, respectively (see cv::getGaussianKernel for details); to fully control the result regardless of possible future modifications of all this semantics, it is recommended to specify all of ksize, sigmaX, and sigmaY.
  • borderType — pixel extrapolation method, 可参考:cv::BorderTypes

实现示例(c++)

#include 
#include 
#include 
 
using namespace cv;
 
int main()
{
	//载入图像
	Mat image = imread("1.jpg");
	Mat dst1 , dst2,dst3;
	 //均值滤波
	blur(image, dst1, Size(7, 7));
	//方框滤波
	cv::boxFilter(image, dst2, -1, cv::Size(7, 7), cv::Point(-1, -1), true, cv::BORDER_CONSTANT);
	//高斯滤波
	cv:: GaussianBlur(image, dst3,cv::Size(7, 7),0.8);
	
    //创建窗口并显示
	namedWindow("均值滤波效果图");
    namedWindow("方框滤波效果图");
    namedWindow("高斯滤波效果图");
	imshow("均值滤波效果图", dst1);
    imshow("方框滤波效果图", dts2);
    imshow("高斯滤波效果图", dts3);
	waitKey(0);
	return 0;
}

进阶实现(根据原理自己实现)

  • 1.方框滤波
#include 
#include 
#include 
#include 
 
/////////////////////////////////////////
//求积分图-优化方法
//由上方negral(i-1,j)加上当前行的和即可
//对于W*H图像:2*(W-1)*(H-1)次加减法
//比常规方法快1.5倍左右
/////////////////////////////////////////
void Fast_integral(cv::Mat& src, cv::Mat& dst){
	int nr = src.rows;
	int nc = src.cols;
	int sum_r = 0;
	dst = cv::Mat::zeros(nr + 1, nc + 1, CV_64F);
	for (int i = 1; i < dst.rows; ++i){
		for (int j = 1, sum_r = 0; j < dst.cols; ++j){
			//行累加,因为积分图相当于在原图上方加一行,左边加一列,所以积分图的(1,1)对应原图(0,0),(i,j)对应(i-1,j-1)
			sum_r = src.at<uchar>(i - 1, j - 1) + sum_r; //行累加
			dst.at<double>(i, j) = dst.at<double>(i - 1, j) + sum_r;
		}
	}
}
 
//////////////////////////////////
//盒子滤波-均值滤波是其特殊情况
/////////////////////////////////
void BoxFilter(cv::Mat& src, cv::Mat& dst, cv::Size wsize, bool normalize){
 
	//图像边界扩充
	if (wsize.height % 2 == 0 || wsize.width % 2 == 0){
		fprintf(stderr, "Please enter odd size!");
		exit(-1);
	}
	int hh = (wsize.height - 1) / 2;
	int hw = (wsize.width - 1) / 2;
	cv::Mat Newsrc;
	cv::copyMakeBorder(src, Newsrc, hh, hh, hw, hw, cv::BORDER_REFLECT);//以边缘为轴,对称
	src.copyTo(dst);
 
	//计算积分图
	cv::Mat inte;
	Fast_integral(Newsrc, inte);
 
	//BoxFilter
	double mean = 0;
	for (int i = hh + 1; i < src.rows + hh + 1; ++i){  //积分图图像比原图(边界扩充后的)多一行和一列 
		for (int j = hw + 1; j < src.cols + hw + 1; ++j){
			double top_left = inte.at<double>(i - hh - 1, j - hw - 1);
			double top_right = inte.at<double>(i - hh - 1, j + hw);
			double buttom_left = inte.at<double>(i + hh, j - hw - 1);
			double buttom_right = inte.at<double>(i + hh, j + hw);
			if (normalize == true)
				mean = (buttom_right - top_right - buttom_left + top_left) / wsize.area();
			else
				mean = buttom_right - top_right - buttom_left + top_left;
			
			//一定要进行判断和数据类型转换
			if (mean < 0)
				mean = 0;
			else if (mean>255)
				mean = 255;
			dst.at<uchar>(i - hh - 1, j - hw - 1) = static_cast<uchar>(mean);
 
		}
	}
}
 
int main(){
	cv::Mat src = cv::imread("I:\\Learning-and-Practice\\2019Change\\Image process algorithm\\Img\\woman2.jpeg");
	if (src.empty()){
		return -1;
	}
 
	//自编BoxFilter测试
	cv::Mat dst1;
	double t2 = (double)cv::getTickCount(); //测时间
	if (src.channels() > 1){
		std::vector<cv::Mat> channel;
		cv::split(src, channel);
		BoxFilter(channel[0], channel[0], cv::Size(7, 7), true);//盒子滤波
		BoxFilter(channel[1], channel[1], cv::Size(7, 7), true);//盒子滤波
		BoxFilter(channel[2], channel[2], cv::Size(7, 7), true);//盒子滤波
		cv::merge(channel,dst1);
	}else
		BoxFilter(src, dst1, cv::Size(7, 7), true);//盒子滤波
	t2 = (double)cv::getTickCount() - t2;
	double time2 = (t2 *1000.) / ((double)cv::getTickFrequency());
	std::cout << "FASTmy_process=" << time2 << " ms. " << std::endl << std::endl;
 
	//opencv自带BoxFilter测试
	cv::Mat dst2;
	double t1 = (double)cv::getTickCount(); //测时间
	cv::boxFilter(src, dst2, -1, cv::Size(7, 7), cv::Point(-1, -1), true, cv::BORDER_CONSTANT);//盒子滤波
	t1 = (double)cv::getTickCount() - t1;
	double time1 = (t1 *1000.) / ((double)cv::getTickFrequency());
	std::cout << "Opencvbox_process=" << time1 << " ms. " << std::endl << std::endl;
 
	cv::namedWindow("src");
	cv::imshow("src", src);
	cv::namedWindow("ourdst",CV_WINDOW_NORMAL);
	cv::imshow("ourdst", dst1);
	cv::namedWindow("opencvdst", CV_WINDOW_NORMAL);
	cv::imshow("opencvdst", dst2);
	cv::waitKey(0);
 
}
    1. 均值滤波
#include 
#include 
#include 
#include 
 
void MeanFilater(cv::Mat& src,cv::Mat& dst,cv::Size wsize){
	//图像边界扩充:窗口的半径
	if (wsize.height % 2 == 0 || wsize.width % 2 == 0){
		fprintf(stderr,"Please enter odd size!" );
		exit(-1);
	}
	int hh = (wsize.height - 1) / 2;
	int hw = (wsize.width - 1) / 2;
	cv::Mat Newsrc;
	cv::copyMakeBorder(src, Newsrc, hh, hh, hw, hw, cv::BORDER_REFLECT_101);//以边缘为轴,对称
	dst=cv::Mat::zeros(src.size(),src.type());
 
    //均值滤波
	int sum = 0;
	int mean = 0;
	for (int i = hh; i < src.rows + hh; ++i){
		for (int j = hw; j < src.cols + hw;++j){
 
			for (int r = i - hh; r <= i + hh; ++r){
				for (int c = j - hw; c <= j + hw;++c){
					sum = Newsrc.at<uchar>(r, c) + sum;
				}
			}
			mean = sum / (wsize.area());
			dst.at<uchar>(i-hh,j-hw)=mean;
			sum = 0;
			mean = 0;
		}
	}
 
}
 
int main(){
	cv::Mat src = cv::imread("I:\\Learning-and-Practice\\2019Change\\Image process algorithm\\Img\\Fig0334(a)(hubble-original).tif");
	if (src.empty()){
		return -1;
	}
	if (src.channels() > 1)
		cv::cvtColor(src,src,CV_RGB2GRAY);
 
	cv::Mat dst;
	cv::Mat dst1;
	cv::Size wsize(7,7);
 
	double t2 = (double)cv::getTickCount();
	MeanFilater(src, dst, wsize); //均值滤波
	t2 = (double)cv::getTickCount() - t2;
	double time2 = (t2 *1000.) / ((double)cv::getTickFrequency());
	std::cout << "FASTmy_process=" << time2 << " ms. " << std::endl << std::endl;
 
	cv::namedWindow("src");
	cv::imshow("src", src);
	cv::namedWindow("dst");
	cv::imshow("dst", dst);
	cv::imwrite("I:\\Learning-and-Practice\\2019Change\\Image process algorithm\\Image Filtering\\MeanFilter\\Mean_hubble.jpg",dst);
	cv::waitKey(0);
}
  • 3.高斯滤波
////////////////////////////
//按二维高斯函数实现高斯滤波
///////////////////////////
void GaussianFilter(cv::Mat& src, cv::Mat& dst, cv::Mat window){
	int hh = (window.rows - 1) / 2;
	int hw = (window.cols - 1) / 2;
	dst = cv::Mat::zeros(src.size(),src.type());
	//边界填充
	cv::Mat Newsrc;
	cv::copyMakeBorder(src, Newsrc, hh, hh, hw, hw, cv::BORDER_REPLICATE);//边界复制
	
	//高斯滤波
	for (int i = hh; i < src.rows + hh;++i){
		for (int j = hw; j < src.cols + hw; ++j){
			double sum[3] = { 0 };
 
			for (int r = -hh; r <= hh; ++r){
				for (int c = -hw; c <= hw; ++c){
					if (src.channels() == 1){
						sum[0] = sum[0] + Newsrc.at<uchar>(i + r, j + c) * window.at<double>(r + hh, c + hw);
					}
					else if (src.channels() == 3){
						cv::Vec3b rgb = Newsrc.at<cv::Vec3b>(i+r,j + c);
						sum[0] = sum[0] + rgb[0] * window.at<double>(r + hh, c + hw);//B
						sum[1] = sum[1] + rgb[1] * window.at<double>(r + hh, c + hw);//G
						sum[2] = sum[2] + rgb[2] * window.at<double>(r + hh, c + hw);//R
					}
				}
			}
 
			for (int k = 0; k < src.channels(); ++k){
				if (sum[k] < 0)
					sum[k] = 0;
				else if (sum[k]>255)
					sum[k] = 255;
			}
			if (src.channels() == 1)
			{
				dst.at<uchar>(i - hh, j - hw) = static_cast<uchar>(sum[0]);
			}
			else if (src.channels() == 3)
			{
				cv::Vec3b rgb = { static_cast<uchar>(sum[0]), static_cast<uchar>(sum[1]), static_cast<uchar>(sum[2]) };
				dst.at<cv::Vec3b>(i-hh, j-hw) = rgb;
			}
 
		}
	}
 
}

效果

Task04图像滤波_第3张图片
Task04图像滤波_第4张图片

相关技术文档、博客、教材、项目推荐

opencv文档: https://docs.opencv.org/3.1.0/d4/d86/group__imgproc__filter.html#ga8c45db9afe636703801b0b2e440fce37
博客:https://blog.csdn.net/weixin_40647819/article/details/89740234
https://blog.csdn.net/weixin_40647819/article/details/88774522
python版本:https://www.kancloud.cn/aollo/aolloopencv/269599 http://www.woshicver.com/FifthSection/4_4_%E5%9B%BE%E5%83%8F%E5%B9%B3%E6%BB%91/

4.6 总结

该部分对三种滤波方法进行了介绍,读者可根据提供的资料对滤波原理进行学习,然后参考示例代码自行实现。图像滤波有很多优化方法,可以提高效率,读者可以尝试学习并实现。


Task04 图像滤波 END.

By: 小武

博客:https://blog.csdn.net/weixin_40647819

关于Datawhale

Datawhale是一个专注于数据科学与AI领域的开源组织,汇集了众多领域院校和知名企业的优秀学习者,聚合了一群有开源精神和探索精神的团队成员。Datawhale以“for the learner,和学习者一起成长”为愿景,鼓励真实地展现自我、开放包容、互信互助、敢于试错和勇于担当。同时Datawhale 用开源的理念去探索开源内容、开源学习和开源方案,赋能人才培养,助力人才成长,建立起人与人,人与知识,人与企业和人与未来的联结。

你可能感兴趣的:(Datawhale组队学习)