GhostNet代码理解

class GhostNet(nn.Module):
    def __init__(self, cfgs, num_classes=1000, width_mult=1.):
        super(GhostNet, self).__init__()
        # setting of inverted residual blocks
        if cfgs is None:
            cfgs = [
                # k, t, c, SE, s
                [3, 16, 16, 0, 1],
                [3, 48, 24, 0, 2],
                [3, 72, 24, 0, 1],
                [5, 72, 40, 1, 2],
                [5, 120, 40, 1, 1],
                [3, 240, 80, 0, 2],
                [3, 200, 80, 0, 1],
                [3, 184, 80, 0, 1],
                [3, 184, 80, 0, 1],
                [3, 480, 112, 1, 1],
                [3, 672, 112, 1, 1],
                [5, 672, 160, 1, 2],
                [5, 960, 160, 0, 1],
                [5, 960, 160, 1, 1],
                [5, 960, 160, 0, 1],
                [5, 960, 160, 1, 1]
            ]
        self.cfgs = cfgs

        # building first layer
        output_channel = _make_divisible(16 * width_mult, 4)
        layers = [nn.Sequential(
            nn.Conv2d(3, output_channel, 3, 2, 1, bias=False),
            nn.BatchNorm2d(output_channel),
            nn.ReLU(inplace=True)
        )]
        input_channel = output_channel

        # building inverted residual blocks
        block = GhostBottleneck
        for k, exp_size, c, use_se, s in self.cfgs:  # 遍历参数
            output_channel = _make_divisible(c * width_mult, 4)
            hidden_channel = _make_divisible(exp_size * width_mult, 4)
            layers.append(block(input_channel, hidden_channel, output_channel, k, s, use_se))  # 追加GhostBottleneck模块
            input_channel = output_channel  # 更新输入通道数
        self.features = nn.Sequential(*layers)

        # building last several layers
        output_channel = _make_divisible(exp_size * width_mult, 4)
        self.squeeze = nn.Sequential(
            nn.Conv2d(input_channel, output_channel, 1, 1, 0, bias=False),
            nn.BatchNorm2d(output_channel),
            nn.ReLU(inplace=True),
            nn.AdaptiveAvgPool2d((1, 1)),
        )
        input_channel = output_channel  # 更新输入通道数

        output_channel = 1280
        self.classifier = nn.Sequential(
            nn.Linear(input_channel, output_channel, bias=False),
            nn.BatchNorm1d(output_channel),
            nn.ReLU(inplace=True),
            nn.Linear(output_channel, num_classes),
        )

        self._initialize_weights()

    def forward(self, x):
        x = self.features(x)
        x = self.squeeze(x)
        x = x.view(x.size(0), -1)
        x = self.classifier(x)
        return x

    def _initialize_weights(self):
        for m in self.modules():
            if isinstance(m, nn.Conv2d):
                nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu')
            elif isinstance(m, nn.BatchNorm2d):
                m.weight.data.fill_(1)
                m.bias.data.zero_()
def _make_divisible(v, divisor, min_value=None):
    """
    This function is taken from the original tf repo.
    It ensures that all layers have a channel number that is divisible by 8
    It can be seen here:
    https://github.com/tensorflow/models/blob/master/research/slim/nets/mobilenet/mobilenet.py
    """
    if min_value is None:
        min_value = divisor
    new_v = max(min_value, int(v + divisor / 2) // divisor * divisor)
    # Make sure that round down does not go down by more than 10%.
    if new_v < 0.9 * v:
        new_v += divisor
    return new_v
class GhostBottleneck(nn.Module):
    def __init__(self, inp, hidden_dim, oup, kernel_size, stride, use_se):
        super(GhostBottleneck, self).__init__()
        assert stride in [1, 2]

        self.conv = nn.Sequential(
            # pw   # 第一个GhostModule
            GhostModule(inp, hidden_dim, kernel_size=1, relu=True),
            # dw  如果步长为2,用可分离卷积,否则不用
            depthwise_conv(hidden_dim, hidden_dim, kernel_size, stride, relu=False) if stride == 2 else nn.Sequential(),
            # Squeeze-and-Excite
            SELayer(hidden_dim) if use_se else nn.Sequential(),  # se模块选择
            # pw-linear 第二个GhostModule
            GhostModule(hidden_dim, oup, kernel_size=1, relu=False),
        )

        if stride == 1 and inp == oup:  #
            self.shortcut = nn.Sequential()  # 为空
        else:  # 步长不为1 或者输入与输出通道数不等,则用shortcut操作
            self.shortcut = nn.Sequential(
                depthwise_conv(inp, inp, 3, stride, relu=True),  # 3x3可分离卷积
                nn.Conv2d(inp, oup, 1, 1, 0, bias=False),
                nn.BatchNorm2d(oup),
            )

    def forward(self, x):
        return self.conv(x) + self.shortcut(x)  # 相加
class GhostModule(nn.Module):
    # ghost模块
    def __init__(self, inp, oup, kernel_size=1, ratio=2, dw_size=3, stride=1, relu=True):
        super(GhostModule, self).__init__()
        self.oup = oup  # 输出通道数
        init_channels = math.ceil(oup / ratio)
        new_channels = init_channels * (ratio - 1)  # 计算新的通道数

        self.primary_conv = nn.Sequential(
            nn.Conv2d(inp, init_channels, kernel_size, stride, kernel_size // 2, bias=False),  # 1x1卷积
            nn.BatchNorm2d(init_channels),
            nn.ReLU(inplace=True) if relu else nn.Sequential(),  # relu选择
        )

        self.cheap_operation = nn.Sequential(
            nn.Conv2d(init_channels, new_channels, dw_size, 1, dw_size // 2, groups=init_channels, bias=False),  # 3x3分离卷积
            nn.BatchNorm2d(new_channels),
            nn.ReLU(inplace=True) if relu else nn.Sequential(),
        )

    def forward(self, x):
        x1 = self.primary_conv(x)  # 初始卷积计算
        x2 = self.cheap_operation(x1)  # cheap可分离卷积计算
        out = torch.cat([x1, x2], dim=1)  # 按通道合并
        return out[:, :self.oup, :, :]  # 输出前self.oup通道数
def depthwise_conv(inp, oup, kernel_size=3, stride=1, relu=False):
    # 可分离卷积
    return nn.Sequential(
        nn.Conv2d(inp, oup, kernel_size, stride, kernel_size // 2, groups=inp, bias=False),
        nn.BatchNorm2d(oup),
        nn.ReLU(inplace=True) if relu else nn.Sequential(),
    )

class SELayer(nn.Module):
    # se模块
    def __init__(self, channel, reduction=4):
        super(SELayer, self).__init__()
        self.avg_pool = nn.AdaptiveAvgPool2d(1)
        self.fc = nn.Sequential(
            nn.Linear(channel, channel // reduction),
            nn.ReLU(inplace=True),
            nn.Linear(channel // reduction, channel), )

    def forward(self, x):
        b, c, _, _ = x.size()
        y = self.avg_pool(x).view(b, c)
        y = self.fc(y).view(b, c, 1, 1)
        y = torch.clamp(y, 0, 1)
        return x * y

论文链接
代码链接

你可能感兴趣的:(pytorch基本模型理解)