OpenCV学习笔记(二十一)——车辆识别和跟踪

     今天在GitHub上看到一个对车辆训练好的模型,即xml文件,于是拿来测试了一个效果。我用这个xml文件对视频中的每一帧画面进行简单的车辆识别定位,演示代码如下:

import cv2
import numpy as np

camera = cv2.VideoCapture ("video.avi")
camera.open("video.avi")
car_cascade = cv2.CascadeClassifier('cars.xml')

while True:
    (grabbed,frame) = camera.read()

    grayvideo = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)

    cars = car_cascade.detectMultiScale(grayvideo, 1.1, 1)
    # print(cars)
    # print(type(cars))
    # print(cars.shape)
    # 部分输出如下所示:
    # [[255  62  37  37]
    #  [144  25  35  35]
    #  [219  81  62  62]
    #  [246  52  54  54]]
    # < class 'numpy.ndarray'>
    # (4, 4)
    # ...

    for (x,y,w,h) in cars:
        cv2.rectangle(frame,(x,y),(x+w,y+h),(0,0,255),2)
        cv2.imshow("video",frame)

    if cv2.waitKey(1)== ord('q'):
        break
camera.release()
cv2.destroyAllWindows()

运行程序,截取其中某几帧画面,如下:

OpenCV学习笔记(二十一)——车辆识别和跟踪_第1张图片

OpenCV学习笔记(二十一)——车辆识别和跟踪_第2张图片

OpenCV学习笔记(二十一)——车辆识别和跟踪_第3张图片

显然,该模型对汽车识别的精度不够。

 附:测试视频以及xml模型文件下载地址

   https://download.csdn.net/download/weixin_41695564/10419268

你可能感兴趣的:(OpenCV)