2.1 Harris角点检测器

第二章讲局部图像描述子,旨在寻找图像间的对应点和对应区域。可以通过图像匹配的方式完成创建全景图、增强现实技术以及计算图像的三维重建等工作。

Harris角点检测算法(也称Harris或Stephens角点检测器)),主要思想:如果像素周围显示存在多于一个方向的边,就认为该点为兴趣点。称为角点。

# 2.1 Harris角点检测器
from pylab import *
from numpy import *
from PIL import Image
from numpy import  random
from scipy.ndimage import filters
from imageio import imwrite


def computer_harris_response(im, sigma = 3):
    """在一幅灰度图像中,对每个像素计算Harris角点检测器响应函数"""

    # 计算导数
    imx = zeros(im.shape)
    filters.gaussian_filter(im, (sigma, sigma), (0, 1), imx)
    imy = zeros(im.shape)
    filters.gaussian_filter(im, (sigma, sigma), (1, 0), imy)
    # 计算Harris矩阵的分量
    Wxx = filters.gaussian_filter(imx*imx, sigma)
    Wxy = filters.gaussian_filter(imx * imy, sigma)
    Wyy = filters.gaussian_filter(imy * imy, sigma)
    # 计算特征值和迹
    Wdet = Wxx*Wyy-Wxy**2
    Wtr = Wxx + Wyy

    return Wdet/Wtr


def get_harris_points(harrisim, min_dist=10, threshold=0.1):
    """从一幅Harris响应图像中返回角点。min_dist为分割角点和图像边界的最小像素数目"""

    # 寻找高于阈值的候选角点
    corner_threshold = harrisim.max()*threshold
    harrisim_t = (harrisim > corner_threshold)*1
    # 得到候选点的坐标
    coords = array(harrisim_t.nonzero()).T
    # 以及它们的Harris响应值
    candidate_values = [harrisim[c[0], c[1]] for c in coords]
    # 对候选点按照Harris响应值进行排序
    index = argsort(candidate_values)
    # 将可行点的位置保存到数组中
    allowed_locations = zeros(harrisim.shape)
    allowed_locations[min_dist:-min_dist, min_dist:-min_dist] = 1
    # 按照min_distance原则,选择最佳Harris点
    filtered_coords = []
    for i in index:
        if allowed_locations[coords[i,0], coords[i,1]] == 1:
            filtered_coords.append(coords[i])
            allowed_locations[(coords[i,0]-min_dist):(coords[i,0]+min_dist),
            (coords[i,1]-min_dist):(coords[i,1]+min_dist)] = 0

    return filtered_coords


def plot_harris_points(image, filtered_coords):
    """绘制图像中检测到的角点"""

    figure()
    gray()
    imshow(image)
    plot([p[1] for p in filtered_coords], [p[0] for p in filtered_coords], '*')
    axis('off')
    show()


im = array(Image.open('empire.jpg').convert('L'))
harrisim = computer_harris_response(im)
filtered_coords = get_harris_points(harrisim, threshold=0.2)
plot_harris_points(im, filtered_coords)

以上为一个Harris角点检测算法实现的例子。如果想要了解角点检测的不同方法,包括Harris角点检测器的改进和进一步的开发应用,可以查找资源,如下面:

网站

 

在图像间寻找对应点

from pylab import *
from numpy import *
from PIL import Image
from numpy import random
from scipy.ndimage import filters
from imageio import imwrite


def get_descriptors(image, filtered_coords, wid=5):
    """
    对于每个返回的点,返回点周围2*wid+1个像素的值
    (假设选取点的min_distance>wid)
    """
    desc = []
    for coords in filtered_coords:
        patch = image[coords[0] - wid:coords[0] + wid + 1,
                      coords[1] - wid:coords[1] + wid + 1].flatten()
        desc.append(patch)
    return desc


def match(desc1, desc2, threshold=0.5):
    """对于第一幅图像中的每个角点描述子,使用归一化互相关,
    选取它在第二幅图像中的匹配角点"""
    n = len(desc1[0])
    # 点对的距离
    d = -ones((len(desc1), len(desc2)))
    for i in range(len(desc1)):
        for j in range(len(desc2)):
            d1 = (desc1[i]-mean(desc1[i]))/std(desc1[i])
            d2 = (desc2[j]-mean(desc2[j]))/std(desc2[j])
            ncc_value = sum(d1*d2)/(n-1)  # 归一化的互相关矩阵
            if ncc_value > threshold:
                d[i, j] = ncc_value

    ndx = argsort(-d)  # Returns the indices that would sort an array. 从小到大
    matchscores = ndx[:, 0]

    return matchscores


def match_twosided(desc1, desc2, threshold=0.5):
    """两边对称版本的match()"""
    matches_12 = match(desc1, desc2, threshold)
    matches_21 = match(desc2, desc1, threshold)

    ndx_12 = where(matches_12 >= 0)[0]

    # 去除非对称的匹配
    for n in ndx_12:
        if matches_21[matches_12[n]] != n:
            matches_12[n] = -1

    return matches_12


def appendimages(im1, im2):
    """返回将两幅图像并排拼接成的一幅新图像"""

    # 选取具有最少行数的图像,然后填充足够的空行
    rows1 = im1.shape[0]
    rows2 = im2.shape[0]

    if rows1 < rows2:
        im1 = concatenate((im1, zeros((rows2-rows1, im1.shape[1]))), axis=0)
    elif rows1 > rows2:
        im2 = concatenate((im1, zeros((rows1 - rows2, im2.shape[1]))), axis=0)
    # 如果这些情况都没有,那么它们的行数相同,不需要进行填充

    return concatenate((im1, im2), axis=1)


def plot_matches(im1, im2, locs1, locs2, matchscores, show_below=True):
    """显示一幅带有连接匹配之间连线的图片
      输入:im1,im2(数组图像),locs1,locs2(特征位置),matchscores(match()的输出)
      show_below(如果图像应该显示在匹配的下方"""

    im3 = appendimages(im1, im2)
    if show_below:
        im3 = vstack((im3, im3))  # ?

    imshow(im3)

    cols1 = im1.shape[1]
    for i, m in enumerate(matchscores):
        if m > 0:
            plot([locs1[i][1], locs2[m][1]+cols1], [locs1[i][0], locs2[m][0]], 'c')
    axis('off')


def computer_harris_response(im, sigma=3):
    """在一幅灰度图像中,对每个像素计算Harris角点检测器响应函数"""

    # 计算导数
    imx = zeros(im.shape)
    filters.gaussian_filter(im, (sigma, sigma), (0, 1), imx)
    imy = zeros(im.shape)
    filters.gaussian_filter(im, (sigma, sigma), (1, 0), imy)
    # 计算Harris矩阵的分量
    Wxx = filters.gaussian_filter(imx * imx, sigma)
    Wxy = filters.gaussian_filter(imx * imy, sigma)
    Wyy = filters.gaussian_filter(imy * imy, sigma)
    # 计算特征值和迹
    Wdet = Wxx * Wyy - Wxy ** 2
    Wtr = Wxx + Wyy

    return Wdet / Wtr


def get_harris_points(harrisim, min_dist=10, threshold=0.1):
    """从一幅Harris响应图像中返回角点。min_dist为分割角点和图像边界的最小像素数目"""

    # 寻找高于阈值的候选角点
    corner_threshold = harrisim.max() * threshold
    harrisim_t = (harrisim > corner_threshold) * 1
    # 得到候选点的坐标
    coords = array(harrisim_t.nonzero()).T
    # 以及它们的Harris响应值
    candidate_values = [harrisim[c[0], c[1]] for c in coords]
    # 对候选点按照Harris响应值进行排序
    index = argsort(candidate_values)
    # 将可行点的位置保存到数组中
    allowed_locations = zeros(harrisim.shape)
    allowed_locations[min_dist:-min_dist, min_dist:-min_dist] = 1
    # 按照min_distance原则,选择最佳Harris点
    filtered_coords = []
    for i in index:
        if allowed_locations[coords[i, 0], coords[i, 1]] == 1:
            filtered_coords.append(coords[i])
            allowed_locations[(coords[i, 0] - min_dist):(coords[i, 0] + min_dist),
                              (coords[i, 1] - min_dist):(coords[i, 1] + min_dist)] = 0

    return filtered_coords


wid = 5

im1 = array(Image.open('crans_1_small.jpg').convert('L'))
harrisim = computer_harris_response(im1, 5)
filtered_coords1 = get_harris_points(harrisim, wid+1)
d1 = get_descriptors(im1, filtered_coords1, wid)

im2 = array(Image.open('crans_2_small.jpg').convert('L'))
harrisim = computer_harris_response(im2, 5)
filtered_coords2 = get_harris_points(harrisim, wid+1)
d2 = get_descriptors(im2, filtered_coords2, wid)

print("starting matching")
matches = match_twosided(d1, d2)

figure()
gray()
plot_matches(im1, im2, filtered_coords1, filtered_coords2, matches[:100])
show()

该方法存在不正确匹配,因为图像像素块的互相关矩阵具有较弱的描述性。此外,这些描述符不具有尺度不变性和旋转不变性,且算法中像素块的大小也会影响对应匹配的结果。

 

你可能感兴趣的:(python,计算机视觉)