- 生成式人工智能实战 | 深度卷积生成对抗网络(Deep Convolutional Generative Adversarial Network, DCGAN)
盼小辉丶
生成式人工智能实战150讲人工智能生成对抗网络神经网络
生成式人工智能实战|深度卷积生成对抗网络0.前言1.模型与数据集分析1.1模型分析1.2数据集介绍2.构建DCGAN生成人脸图像2.1数据处理2.2模型构建2.3模型训练0.前言深度卷积生成对抗网络(DeepConvolutionalGenerativeAdversarialNetworks,DCGAN)是基于生成对抗网络(ConvolutionalGenerativeAdversarialNet
- Python 里 PyTorch 的生成对抗网络架构
Python编程之道
pythonpytorch生成对抗网络ai
Python里PyTorch的生成对抗网络架构关键词:PyTorch、生成对抗网络(GAN)、深度学习、神经网络、计算机视觉、对抗训练、生成模型摘要:本文深入探讨了在PyTorch框架下实现生成对抗网络(GAN)的完整架构。我们将从GAN的基本原理出发,详细讲解其核心组件、数学基础,并通过PyTorch代码实现一个完整的GAN模型。文章涵盖了从理论到实践的各个方面,包括模型设计、训练技巧、常见问题
- GAN中的SSIM指标:图像质量评估的利器
这张生成的图像能检测吗
GAN系列人工智能计算机视觉算法生成对抗网络机器学习深度学习
GAN中的SSIM指标:图像质量评估的利器在生成对抗网络(GAN)的研究和应用中,如何客观地评估生成图像的质量一直是一个关键问题。传统的像素级指标如MSE和PSNR往往无法很好地反映人眼对图像质量的感知。而SSIM(StructuralSimilarityIndexMeasure,结构相似性指数)作为一种更贴近人类视觉感知的图像质量评估指标,在GAN的评估体系中发挥着重要作用。SSIM指标概述什么
- 【图像处理入门】11. 深度学习初探:从CNN到GAN的视觉智能之旅
小米玄戒Andrew
图像处理:从入门到专家深度学习图像处理cnn计算机视觉CVGAN
摘要深度学习为图像处理注入了革命性动力。本文将系统讲解卷积神经网络(CNN)的核心原理,通过PyTorch实现图像分类实战;深入解析迁移学习的高效应用策略,利用预训练模型提升自定义任务性能;最后揭开生成对抗网络(GAN)的神秘面纱,展示图像生成与增强的前沿技术。结合代码案例与可视化分析,帮助读者跨越传统算法与深度学习的技术鸿沟。一、卷积神经网络(CNN)基础与实战1.CNN的核心组件与工作原理1.
- AIGC虚拟人物VS传统3D建模:技术对比与优劣势分析
AI原生应用开发
AI原生应用开发AIGC3dai
AIGC虚拟人物VS传统3D建模:技术对比与优劣势分析关键词:AIGC虚拟人物、传统3D建模、生成对抗网络、三维重建、数字孪生、自动化生成、手工建模摘要:本文从技术原理、实现流程、应用场景等维度,深入对比AIGC(人工智能生成内容)虚拟人物与传统3D建模技术。通过剖析核心算法、数学模型和工程实践案例,揭示两者在生产效率、成本控制、艺术表现力等方面的差异。结合具体代码实现和行业应用场景,分析各自的优
- 基于深度学习的图像生成技术:GAN的进阶探索与应用实践
赵大仁
深度学习生成对抗网络人工智能
生成对抗网络(GAN)自2014年提出以来,已成为深度学习领域的研究热点。其强大的图像生成能力在众多领域展现出无限潜力。本文将深入探讨GAN的高级技术,分享实践经验,并分析当前GAN研究的最新进展。一、GAN的核心原理回顾生成对抗网络(GAN)由生成器(Generator)和判别器(Discriminator)组成,两者通过对抗性训练过程不断优化。生成器的目标是生成能够欺骗判别器的样本,而判别器的
- 基于深度学习的智能图像风格转换系统:技术与实践
Blossom.118
机器学习与人工智能深度学习人工智能机器学习机器人神经网络pythonsklearn
前言图像风格转换是一种将一张图像的内容与另一张图像的风格相结合的技术,广泛应用于艺术创作、图像编辑和视觉特效等领域。近年来,深度学习技术,尤其是卷积神经网络(CNN)和生成对抗网络(GAN),为图像风格转换带来了革命性的进展。本文将详细介绍基于深度学习的智能图像风格转换系统的原理、实现方法以及实际应用案例。一、图像风格转换的基本概念1.1什么是图像风格转换?图像风格转换是一种图像处理技术,其目标是
- 生成对抗网络(GAN)与深度生成模型实战
软考和人工智能学堂
人工智能Python开发经验#DeepSeek快速入门开发语言
1.生成模型基础与GAN原理1.1生成模型概览生成模型是深度学习中的重要分支,主要分为以下几类:变分自编码器(VAE):基于概率图模型的生成方法生成对抗网络(GAN):通过对抗训练学习数据分布自回归模型:PixelCNN、WaveNet等流模型(Flow-basedModels):基于可逆变换的精确密度估计扩散模型(DiffusionModels):最新兴起的生成方法1.2GAN核心思想GAN由生
- 机器学习在智能水泥基复合材料中的应用与实践
m0_75133639
复合材料复合材料机器学习人工智能水泥基材料科学电力工业航空航天科学
会议背景人工智能与材料科学的深度融合正推动复合材料研究进入新阶段。本次会议聚焦机器学习在智能水泥基复合材料中的创新应用,涵盖材料设计优化、性能预测、缺陷检测及寿命管理等前沿方向,为跨学科研究提供方法论支持。会议亮点1.前沿技术融合围绕材料科学核心挑战(如强度预测、小样本数据分析),系统讲解:物理信息神经网络(PINNs):融合物理定律解决材料力学问题生成对抗网络(GAN):实现复合材料数据增强可解
- AIGC 音乐:满足音乐创作的个性化定制需求
SuperAGI2025
AIGCai
AIGC音乐:满足音乐创作的个性化定制需求关键词:AIGC音乐、人工智能音乐生成、个性化音乐创作、音乐AI模型、深度学习音乐、音乐风格迁移、自动作曲摘要:本文深入探讨了AIGC(人工智能生成内容)在音乐创作领域的应用,重点分析了如何利用AI技术满足个性化音乐定制需求。文章从技术原理出发,详细介绍了音乐AI的核心算法和模型架构,包括音乐表示学习、生成对抗网络(GAN)在音乐生成中的应用、Transf
- 一文读懂特征对齐:多模态世界的“月老红线”
.别止步春天.
人工智能计算机视觉深度学习
文章目录1、引言2、啥是多模态数据3、为啥要特征对齐4、特征对齐是咋干活的5、特征对齐的应用场景6、多模态领域里特征对齐的方法6.1基于神经网络架构设计6.2基于注意力机制6.3基于损失函数设计6.4基于生成对抗网络(GAN)7、总结1、引言嘿,各位技术宅们!今天咱来唠唠多模态领域里一个超有趣又超重要的概念——特征对齐(FeatureAlignment)。这玩意儿就像是多模态世界里的“月老”,牵起
- 边缘计算算法与自动驾驶安全优化实践
智能计算研究中心
其他
内容概要在自动驾驶系统的安全优化进程中,边缘计算算法通过分布式算力部署与实时数据处理能力,为车辆决策层构建了低时延、高容错的技术底座。本文系统性分析联邦学习与生成对抗网络(GAN)的融合机制,在保护数据隐私的同时提升多节点模型的动态适应能力,并通过可解释性算法对决策逻辑进行可视化解析,增强系统透明度。针对复杂行车场景,数据预处理与特征工程的双向协同显著优化了障碍物识别与路径规划的鲁棒性,结合F1值
- 深度学习驱动的低照度图像质量提升技术
本文还有配套的精品资源,点击获取简介:低照度图像常伴有噪声问题如粉尘和雾,影响图像质量和后续分析。本技术采用深度学习模型,特别是卷积神经网络(CNN)及其变种如条件生成对抗网络(CGAN),提升低照度图像的可见度和质量。CGAN通过引入条件变量来增强图像清晰度,而去雾算法基于大气散射模型学习逆向操作以去除雾气。此外,PyTorch框架被用于实现该技术,包含源代码、数据集、预训练模型、结果示例和文档
- 基于 TensorFlow 2 的 WGAN来生成表格数据、数值数据和序列数据。 WGAN生成对抗网络。代码仅供参考
QQ67658008
tensorflow生成对抗网络neo4jWGAN表格数据序列数据对抗网络
WGAN生成对抗网络基于pythontensorflow2以下框架,环境应该如何自己配置?表格数据、数值数据,序列数据生成里面是一个标准函数的数据,读取自己数据需要自己改。可以随意替换纬度,需要自己手动改.如何配置环境并编写一个基于TensorFlow2的WGAN(WassersteinGenerativeAdversarialNetwork)来生成表格数据、数值数据和序列数据。我们将使用标准函数
- AIGC(Artificial Intelligence Generated Content)
ArtificialIntelligenceGeneratedContent概念定义人工智能生成内容,是指基于生成对抗网络、大型预训练模型等人工智能的技术方法,通过已有数据的学习和识别,以适当的泛化能力生成相关内容的技术。AIGC技术的核心思想是利用人工智能算法生成具有一定创意和质量的内容。通过训练模型和大量数据的学习,AIGC可以根据输入的条件或指导,生成与之相关的内容。例如,通过输入关键词、描
- 用Python实现AIGC驱动的3D模型生成:完整教程
AI天才研究院
ChatGPT计算AI大模型应用入门实战与进阶pythonAIGC3dai
用Python实现AIGC驱动的3D模型生成:完整教程关键词:AIGC、3D模型生成、Python、深度学习、计算机图形学、生成对抗网络、点云处理摘要:本文详细介绍了如何使用Python实现AIGC(人工智能生成内容)驱动的3D模型生成技术。我们将从基础概念出发,逐步深入讲解3D模型生成的原理、算法实现和实际应用。内容包括3D数据表示方法、生成模型架构设计、训练策略优化以及完整的Python实现代
- matlab二维傅里叶变换ffshift,形象理解二维傅里叶变换
Fan Cheng
点击上方“机器学习与生成对抗网络”,关注"星标"获取有趣、好玩的前沿干货!来自|知乎阿姆斯特朗链接|https://zhuanlan.zhihu.com/p/110026009文仅交流,侵删1.回顾一下一维FT公式:通俗来讲,一维傅里叶变换是将一个一维的信号分解成若干个复指数波。而由于,所以可以将每一个复指数波都视为是余弦波+j*正弦波的组合。对于一个正弦波而言,需要三个参数来确定它:频率,幅度,
- GAN生成模型评价体系:从主观感知到客观度量的技术演进
青柚MATLAB学习
对抗网络生成对抗网络GAN评价指标WassFIDInceptionScore
摘要本文系统解析生成对抗网络(GAN)的评价方法体系。首先指出主观评价在人力成本、过拟合误判等方面的局限性,随后依次介绍InceptionScore、ModeScore等经典客观指标的原理与公式,对比KernelMMD、WassersteinDistance等分布度量方法的优劣,最后阐述FID、1-NN分类器等高效评价工具的应用场景。本文结合公式推导与实验结论,为GAN性能评估提供理论与实践指南。
- 深度学习网络架构与应用:CNN、RNN、GAN三大核心模型解析
you的日常
人工智能大语言模型深度学习人工智能cnnrnngan神经网络生成对抗网络
深度学习领域三大核心神经网络架构——卷积神经网络(CNN)、循环神经网络(RNN)及生成对抗网络(GAN)各具特色,共同推动着人工智能技术的边界。CNN凭借其局部感受野和参数共享机制,在图像分类与目标检测领域展现出卓越性能;RNN通过循环结构有效处理序列数据,在文本生成等任务中发挥重要作用;GAN则利用生成器与判别器的对抗博弈,生成逼真数据。这三大架构在各自领域不断演进,形成了一系列经典模型与创新
- 生成式AI模型学习笔记
Humbunklung
机器学习人工智能学习笔记机器学习深度学习
文章目录生成式AI模型1.定义2.生成式模型与判别式模型3.深度生成式模型的类型3.1能量模型3.2变分自编码3.2.1变分自编码器(VariationalAutoencoder,VAE)简介3.2.2代码示例(以PyTorch为例)3.3生成对抗网络3.4流模型3.4.1流模型简介3.4.2NICE:开创性流模型3.4.3流模型与VAE、GAN的区别3.5自回归模型3.5.1自回归模型简介3.5
- 生成对抗网络(GAN)基础原理深度解析:从直观理解到形式化表达
青柚MATLAB学习
对抗网络生成对抗网络GAN生成器判别器目标函数交叉熵损失
摘要本文详细解析生成对抗网络(GAN)的核心原理,从通俗类比入手,结合印假钞与警察博弈的案例阐述生成器与判别器的对抗机制;通过模型结构示意图,解析噪声采样、样本生成及判别流程;基于公式推导目标函数的数学本质,剖析判别器与生成器的优化逻辑;最后对比GAN目标函数与交叉熵损失的关联差异。本文结合公式推导与概念对比,助力读者建立GAN基础理论体系。关键词:生成对抗网络GAN生成器判别器目标函数交叉熵损失
- **深度学习框架与生成对抗网络:探索前沿技术的融合之美**摘要:本文将深入探讨深度学习框架在生成对抗网络(GANs)中的应用,分析大模型训练的实践,并展望联邦学习在未来技术趋势中的位置。我们将通过实例
2401_89451588
深度学习生成对抗网络人工智能python
深度学习框架与生成对抗网络:探索前沿技术的融合之美摘要:本文将深入探讨深度学习框架在生成对抗网络(GANs)中的应用,分析大模型训练的实践,并展望联邦学习在未来技术趋势中的位置。我们将通过实例和代码片段展示相关技术细节,帮助读者更好地理解这些前沿技术。一、引言随着人工智能(AI)技术的飞速发展,深度学习框架作为实现AI的重要工具,已经成为研究的热点。生成对抗网络(GANs)作为深度学习领域的一个重
- 图像生成详解
水花花花花花
人工智能就业实战深度学习计算机视觉机器学习
GAN(生成对抗网络)模型讲解生成器生成器是GAN中用于生成逼真图像的部分。它接收随机噪声向量作为输入,通过一系列的卷积转置层和激活函数,生成与训练数据相似的图像。生成器的目标是生成足够逼真的图像,以欺骗判别器认为这些图像是真实的。判别器判别器是一个二分类器,用于判断输入的图像是真实的还是生成的。它接收图像作为输入,通过一系列的卷积层和激活函数,输出图像为真实的概率。判别器的目标是正确区分真实图像
- 【课堂笔记】生成对抗网络 Generative Adversarial Network(GAN)
zyq~
机器学习笔记生成对抗网络人工智能机器学习概率论GAN
文章目录问题背景原理更新过程判别器生成器问题背景 一方面,许多机器学习任务需要大量标注数据,但真实数据可能稀缺或昂贵(如医学影像、稀有事件数据)。如何在少量数据中达到一个很好的训练效果是一个很重要的问题。 另一方面,传统生成模型(如变分自编码器VAE)生成的样本往往模糊或缺乏多样性,难以捕捉真实数据的复杂分布(如高分辨率图像、复杂文本等)。 生成式对抗网络(GAN)提出了用生成器(Gener
- 【深度学习】16. Deep Generative Models:生成对抗网络(GAN)
pen-ai
深度学习机器学习深度学习生成对抗网络人工智能
DeepGenerativeModels:生成对抗网络(GAN)什么是生成建模(GenerativeModeling)生成模型的主要目标是从数据中学习其分布,从而具备“生成”数据的能力。两个关键任务:密度估计(DensityEstimation):学习真实数据的概率分布p(x)p(x)p(x)。样本生成(SampleGeneration):从模型学习的分布中采样,生成新样本。换句话说,生成建模不是
- AIGC领域Stable Diffusion的模型微调方法与实践
AI大模型应用工坊
AI大模型开发实战AIGCstablediffusionai
AIGC领域StableDiffusion的模型微调方法与实践关键词:StableDiffusion、模型微调、AIGC、深度学习、生成对抗网络、文本到图像生成、迁移学习摘要:本文系统解析StableDiffusion模型微调的核心技术体系,从基础原理到工程实践展开深度探讨。首先剖析StableDiffusion的核心架构与微调理论基础,分类讲解全量微调、参数高效微调(LoRA/QLoRA)、特征
- AI时代新词-生成对抗网络(GAN)
明似水
AI人工智能生成对抗网络神经网络
一、什么是生成对抗网络(GAN)?生成对抗网络(GenerativeAdversarialNetwork,简称GAN)是一种由生成器(Generator)和判别器(Discriminator)组成的深度学习模型。GAN的核心思想是通过生成器生成逼真的数据,同时通过判别器判断生成的数据是否真实,两者相互对抗、相互学习,最终使生成器能够生成高质量的假数据。GAN在图像生成、视频生成、音频生成等领域有着
- PyTorch实战(7)——生成对抗网络(Generative Adversarial Network, GAN)实践详解
盼小辉丶
pytorch生成对抗网络生成模型生成式人工智能
PyTorch实战(7)——生成对抗网络实践详解0.前言1.生成对抗网络训练步骤2.准备训练数据2.1创建训练数据集2.2准备训练数据集3.构建生成对抗网络3.1判别器网络3.2生成器网络3.3模型训练3.4生成器的保存与加载小结系列链接0.前言生成对抗网络(GenerativeAdversarialNetwork,GAN)最早由IanGoodfellow于2014年提出,其中“对抗”一词指的是两
- 图解GAN:生成对抗网络的原理与代码实现
layneyao
ai生成对抗网络人工智能神经网络
图解GAN:生成对抗网络的原理与代码实现系统化学习人工智能网站(收藏):https://www.captainbed.cn/flu文章目录图解GAN:生成对抗网络的原理与代码实现摘要引言1.GAN基础原理与数学推导1.1博弈论视角1.2训练流程图1.3原始GAN代码实现(PyTorch)2.GAN经典变体解析2.1DCGAN:卷积化GAN2.2WGAN:Wasserstein距离替代JSD2.3C
- 深度学习中的卷积和反卷积
思绪漂移
深度学习人工智能
深度学习中的卷积和反卷积一、引言:为什么需要卷积和反卷积?在计算机视觉领域,卷积神经网络(CNN)通过卷积操作实现了平移不变性特征提取,而反卷积(TransposedConvolution)则作为图像重构的核心技术,广泛应用于图像分割、超分辨率重建、生成对抗网络(GAN)等场景。二者的核心差异在于:卷积:高维→低维(如224x224图像→7x7特征图)通过局部连接和权值共享显著减少参数量,实现高效
- Enum用法
不懂事的小屁孩
enum
以前的时候知道enum,但是真心不怎么用,在实际开发中,经常会用到以下代码:
protected final static String XJ = "XJ";
protected final static String YHK = "YHK";
protected final static String PQ = "PQ";
- 【Spark九十七】RDD API之aggregateByKey
bit1129
spark
1. aggregateByKey的运行机制
/**
* Aggregate the values of each key, using given combine functions and a neutral "zero value".
* This function can return a different result type
- hive创建表是报错: Specified key was too long; max key length is 767 bytes
daizj
hive
今天在hive客户端创建表时报错,具体操作如下
hive> create table test2(id string);
FAILED: Execution Error, return code 1 from org.apache.hadoop.hive.ql.exec.DDLTask. MetaException(message:javax.jdo.JDODataSto
- Map 与 JavaBean之间的转换
周凡杨
java自省转换反射
最近项目里需要一个工具类,它的功能是传入一个Map后可以返回一个JavaBean对象。很喜欢写这样的Java服务,首先我想到的是要通过Java 的反射去实现匿名类的方法调用,这样才可以把Map里的值set 到JavaBean里。其实这里用Java的自省会更方便,下面两个方法就是一个通过反射,一个通过自省来实现本功能。
1:JavaBean类
1 &nb
- java连接ftp下载
g21121
java
有的时候需要用到java连接ftp服务器下载,上传一些操作,下面写了一个小例子。
/** ftp服务器地址 */
private String ftpHost;
/** ftp服务器用户名 */
private String ftpName;
/** ftp服务器密码 */
private String ftpPass;
/** ftp根目录 */
private String f
- web报表工具FineReport使用中遇到的常见报错及解决办法(二)
老A不折腾
finereportweb报表java报表总结
抛砖引玉,希望大家能把自己整理的问题及解决方法晾出来,Mark一下,利人利己。
出现问题先搜一下文档上有没有,再看看度娘有没有,再看看论坛有没有。有报错要看日志。下面简单罗列下常见的问题,大多文档上都有提到的。
1、没有返回数据集:
在存储过程中的操作语句之前加上set nocount on 或者在数据集exec调用存储过程的前面加上这句。当S
- linux 系统cpu 内存等信息查看
墙头上一根草
cpu内存liunx
1 查看CPU
1.1 查看CPU个数
# cat /proc/cpuinfo | grep "physical id" | uniq | wc -l
2
**uniq命令:删除重复行;wc –l命令:统计行数**
1.2 查看CPU核数
# cat /proc/cpuinfo | grep "cpu cores" | u
- Spring中的AOP
aijuans
springAOP
Spring中的AOP
Written by Tony Jiang @ 2012-1-18 (转)何为AOP
AOP,面向切面编程。
在不改动代码的前提下,灵活的在现有代码的执行顺序前后,添加进新规机能。
来一个简单的Sample:
目标类:
[java]
view plain
copy
print
?
package&nb
- placeholder(HTML 5) IE 兼容插件
alxw4616
JavaScriptjquery jQuery插件
placeholder 这个属性被越来越频繁的使用.
但为做HTML 5 特性IE没能实现这东西.
以下的jQuery插件就是用来在IE上实现该属性的.
/**
* [placeholder(HTML 5) IE 实现.IE9以下通过测试.]
* v 1.0 by oTwo 2014年7月31日 11:45:29
*/
$.fn.placeholder = function
- Object类,值域,泛型等总结(适合有基础的人看)
百合不是茶
泛型的继承和通配符变量的值域Object类转换
java的作用域在编程的时候经常会遇到,而我经常会搞不清楚这个
问题,所以在家的这几天回忆一下过去不知道的每个小知识点
变量的值域;
package 基础;
/**
* 作用域的范围
*
* @author Administrator
*
*/
public class zuoyongyu {
public static vo
- JDK1.5 Condition接口
bijian1013
javathreadConditionjava多线程
Condition 将 Object 监视器方法(wait、notify和 notifyAll)分解成截然不同的对象,以便通过将这些对象与任意 Lock 实现组合使用,为每个对象提供多个等待 set (wait-set)。其中,Lock 替代了 synchronized 方法和语句的使用,Condition 替代了 Object 监视器方法的使用。
条件(也称为条件队列或条件变量)为线程提供了一
- 开源中国OSC源创会记录
bijian1013
hadoopsparkMemSQL
一.Strata+Hadoop World(SHW)大会
是全世界最大的大数据大会之一。SHW大会为各种技术提供了深度交流的机会,还会看到最领先的大数据技术、最广泛的应用场景、最有趣的用例教学以及最全面的大数据行业和趋势探讨。
二.Hadoop
&nbs
- 【Java范型七】范型消除
bit1129
java
范型是Java1.5引入的语言特性,它是编译时的一个语法现象,也就是说,对于一个类,不管是范型类还是非范型类,编译得到的字节码是一样的,差别仅在于通过范型这种语法来进行编译时的类型检查,在运行时是没有范型或者类型参数这个说法的。
范型跟反射刚好相反,反射是一种运行时行为,所以编译时不能访问的变量或者方法(比如private),在运行时通过反射是可以访问的,也就是说,可见性也是一种编译时的行为,在
- 【Spark九十四】spark-sql工具的使用
bit1129
spark
spark-sql是Spark bin目录下的一个可执行脚本,它的目的是通过这个脚本执行Hive的命令,即原来通过
hive>输入的指令可以通过spark-sql>输入的指令来完成。
spark-sql可以使用内置的Hive metadata-store,也可以使用已经独立安装的Hive的metadata store
关于Hive build into Spark
- js做的各种倒计时
ronin47
js 倒计时
第一种:精确到秒的javascript倒计时代码
HTML代码:
<form name="form1">
<div align="center" align="middle"
- java-37.有n 个长为m+1 的字符串,如果某个字符串的最后m 个字符与某个字符串的前m 个字符匹配,则两个字符串可以联接
bylijinnan
java
public class MaxCatenate {
/*
* Q.37 有n 个长为m+1 的字符串,如果某个字符串的最后m 个字符与某个字符串的前m 个字符匹配,则两个字符串可以联接,
* 问这n 个字符串最多可以连成一个多长的字符串,如果出现循环,则返回错误。
*/
public static void main(String[] args){
- mongoDB安装
开窍的石头
mongodb安装 基本操作
mongoDB的安装
1:mongoDB下载 https://www.mongodb.org/downloads
2:下载mongoDB下载后解压
 
- [开源项目]引擎的关键意义
comsci
开源项目
一个系统,最核心的东西就是引擎。。。。。
而要设计和制造出引擎,最关键的是要坚持。。。。。。
现在最先进的引擎技术,也是从莱特兄弟那里出现的,但是中间一直没有断过研发的
 
- 软件度量的一些方法
cuiyadll
方法
软件度量的一些方法http://cuiyingfeng.blog.51cto.com/43841/6775/在前面我们已介绍了组成软件度量的几个方面。在这里我们将先给出关于这几个方面的一个纲要介绍。在后面我们还会作进一步具体的阐述。当我们不从高层次的概念级来看软件度量及其目标的时候,我们很容易把这些活动看成是不同而且毫不相干的。我们现在希望表明他们是怎样恰如其分地嵌入我们的框架的。也就是我们度量的
- XSD中的targetNameSpace解释
darrenzhu
xmlnamespacexsdtargetnamespace
参考链接:
http://blog.csdn.net/colin1014/article/details/357694
xsd文件中定义了一个targetNameSpace后,其内部定义的元素,属性,类型等都属于该targetNameSpace,其自身或外部xsd文件使用这些元素,属性等都必须从定义的targetNameSpace中找:
例如:以下xsd文件,就出现了该错误,即便是在一
- 什么是RAID0、RAID1、RAID0+1、RAID5,等磁盘阵列模式?
dcj3sjt126com
raid
RAID 1又称为Mirror或Mirroring,它的宗旨是最大限度的保证用户数据的可用性和可修复性。 RAID 1的操作方式是把用户写入硬盘的数据百分之百地自动复制到另外一个硬盘上。由于对存储的数据进行百分之百的备份,在所有RAID级别中,RAID 1提供最高的数据安全保障。同样,由于数据的百分之百备份,备份数据占了总存储空间的一半,因而,Mirror的磁盘空间利用率低,存储成本高。
Mir
- yii2 restful web服务快速入门
dcj3sjt126com
PHPyii2
快速入门
Yii 提供了一整套用来简化实现 RESTful 风格的 Web Service 服务的 API。 特别是,Yii 支持以下关于 RESTful 风格的 API:
支持 Active Record 类的通用API的快速原型
涉及的响应格式(在默认情况下支持 JSON 和 XML)
支持可选输出字段的定制对象序列化
适当的格式的数据采集和验证错误
- MongoDB查询(3)——内嵌文档查询(七)
eksliang
MongoDB查询内嵌文档MongoDB查询内嵌数组
MongoDB查询内嵌文档
转载请出自出处:http://eksliang.iteye.com/blog/2177301 一、概述
有两种方法可以查询内嵌文档:查询整个文档;针对键值对进行查询。这两种方式是不同的,下面我通过例子进行分别说明。
二、查询整个文档
例如:有如下文档
db.emp.insert({
&qu
- android4.4从系统图库无法加载图片的问题
gundumw100
android
典型的使用场景就是要设置一个头像,头像需要从系统图库或者拍照获得,在android4.4之前,我用的代码没问题,但是今天使用android4.4的时候突然发现不灵了。baidu了一圈,终于解决了。
下面是解决方案:
private String[] items = new String[] { "图库","拍照" };
/* 头像名称 */
- 网页特效大全 jQuery等
ini
JavaScriptjquerycsshtml5ini
HTML5和CSS3知识和特效
asp.net ajax jquery实例
分享一个下雪的特效
jQuery倾斜的动画导航菜单
选美大赛示例 你会选谁
jQuery实现HTML5时钟
功能强大的滚动播放插件JQ-Slide
万圣节快乐!!!
向上弹出菜单jQuery插件
htm5视差动画
jquery将列表倒转顺序
推荐一个jQuery分页插件
jquery animate
- swift objc_setAssociatedObject block(version1.2 xcode6.4)
啸笑天
version
import UIKit
class LSObjectWrapper: NSObject {
let value: ((barButton: UIButton?) -> Void)?
init(value: (barButton: UIButton?) -> Void) {
self.value = value
- Aegis 默认的 Xfire 绑定方式,将 XML 映射为 POJO
MagicMa_007
javaPOJOxmlAegisxfire
Aegis 是一个默认的 Xfire 绑定方式,它将 XML 映射为 POJO, 支持代码先行的开发.你开发服 务类与 POJO,它为你生成 XML schema/wsdl
XML 和 注解映射概览
默认情况下,你的 POJO 类被是基于他们的名字与命名空间被序列化。如果
- js get max value in (json) Array
qiaolevip
每天进步一点点学习永无止境max纵观千象
// Max value in Array
var arr = [1,2,3,5,3,2];Math.max.apply(null, arr); // 5
// Max value in Jaon Array
var arr = [{"x":"8/11/2009","y":0.026572007},{"x"
- XMLhttpRequest 请求 XML,JSON ,POJO 数据
Luob.
POJOjsonAjaxxmlXMLhttpREquest
在使用XMlhttpRequest对象发送请求和响应之前,必须首先使用javaScript对象创建一个XMLHttpRquest对象。
var xmlhttp;
function getXMLHttpRequest(){
if(window.ActiveXObject){
xmlhttp:new ActiveXObject("Microsoft.XMLHTTP
- jquery
wuai
jquery
以下防止文档在完全加载之前运行Jquery代码,否则会出现试图隐藏一个不存在的元素、获得未完全加载的图像的大小 等等
$(document).ready(function(){
jquery代码;
});
<script type="text/javascript" src="c:/scripts/jquery-1.4.2.min.js&quo