- TensorFlow深度学习实战——DCGAN详解与实现
盼小辉丶
深度学习tensorflow生成对抗网络
TensorFlow深度学习实战——DCGAN详解与实现0.前言1.DCGAN架构2.构建DCGAN生成手写数字图像2.1生成器与判别器架构2.2构建DCGAN相关链接0.前言深度卷积生成对抗网络(DeepConvolutionalGenerativeAdversarialNetwork,DCGAN)是一种基于生成对抗网络(GenerativeAdversarialNetwork,GAN)的深度学
- 基于生成对抗网络增强主动学习的超高温陶瓷硬度优化
神经网络15044
深度学习算法仿真模型生成对抗网络学习人工智能
复现论文:基于生成对抗网络增强主动学习的超高温陶瓷硬度优化我将使用Python复现这篇关于使用生成对抗网络(GAN)增强主动学习来优化超高温陶瓷(UHTC)硬度的研究论文。以下是完整的实现代码和解释。1.环境准备和数据加载首先,我们需要准备必要的Python库并加载数据。importnumpyasnpimportpandasaspdimportmatplotlib.pyplotaspltimpor
- 【零基础学AI】第30讲:生成对抗网络(GAN)实战 - 手写数字生成
1989
0基础学AI人工智能生成对抗网络神经网络python机器学习近邻算法深度学习
本节课你将学到GAN的基本原理和工作机制使用PyTorch构建生成器和判别器DCGAN架构实现技巧训练GAN模型的实用技巧开始之前环境要求Python3.8+需要安装的包:pipinstalltorchtorchvisionmatplotlibnumpyGPU推荐(可大幅加速训练)前置知识第21讲TensorFlow基础第23讲神经网络原理基本PyTorch使用经验核心概念什么是GAN?GAN就像
- AIGC领域AI作画:在数字雕塑中的应用实践
AI原生应用开发
AI原生应用开发AIGCAI作画ai
AIGC领域AI作画:在数字雕塑中的应用实践关键词:AIGC、AI作画、数字雕塑、生成对抗网络、3D建模、艺术创作、深度学习摘要:本文深入探讨了AIGC(人工智能生成内容)技术在数字雕塑领域的创新应用。我们将从技术原理、算法实现到实际案例,全面解析AI如何赋能传统数字雕塑创作流程。文章首先介绍AIGC在艺术创作中的背景和发展现状,然后详细讲解核心算法原理和数学模型,接着通过实际项目案例展示AI作画
- AIGC空间智能在服装设计领域的颠覆性变革
AI天才研究院
ChatGPT实战ChatGPTAI大模型应用入门实战与进阶AIGCai
AIGC空间智能在服装设计领域的颠覆性变革关键词:AIGC、空间智能、服装设计、数字孪生、生成式AI、3D人体建模、智能设计系统摘要:本文深入探讨AIGC(人工智能生成内容)与空间智能技术在服装设计领域的融合创新,揭示其如何通过三维人体建模、场景模拟、智能生成算法重构传统设计流程。从技术原理层解析空间智能的核心模块,结合生成对抗网络(GAN)、Transformer模型等前沿算法,展示从创意生成到
- Python机器学习与深度学习:决策树、随机森林、XGBoost与LightGBM、迁移学习、循环神经网络、长短时记忆网络、时间卷积网络、自编码器、生成对抗网络、YOLO目标检测等
WangYan2022
机器学习/深度学习Python机器学习深度学习随机森林迁移学习
融合最新技术动态与实战经验,旨在系统提升以下能力:①掌握ChatGPT、DeepSeek等大语言模型在代码生成、模型调试、实验设计、论文撰写等方面的实际应用技巧②深入理解深度学习与经典机器学习算法的关联与差异,掌握其理论基础③熟练运用PyTorch实现各类深度学习模型,包括迁移学习、循环神经网络(RNN)、长短时记忆网络(LSTM)、时间卷积网络(TCN)、自编码器、生成对抗网络(GAN)、YOL
- 生成式人工智能实战 | 条件生成对抗网络(conditional Generative Adversarial Network, cGAN)
盼小辉丶
生成对抗网络神经网络深度学习生成式人工智能pytorch
生成式人工智能实战|条件生成对抗网络0.前言1.条件生成对抗网络1.1GAN基础回顾1.2cGAN核心思想2.cGAN网络架构2.1数学原理2.2网络架构3.实现cGAN3.1环境准备与数据加载3.2模型构建3.3模型训练0.前言生成对抗网络(GenerativeAdversarialNetwork,GAN)是近年来深度学习领域最具突破性的技术之一,能够生成逼真的图像、音频甚至文本。然而,传统的G
- 深度探索:机器学习中的 条件生成对抗网络(Conditional GAN, CGAN)算法原理及其应用
目录1.引言与背景2.CGAN定理3.算法原理4.算法实现5.优缺点分析优点:缺点:6.案例应用7.对比与其他算法8.结论与展望1.引言与背景生成对抗网络(GenerativeAdversarialNetworks,GANs)作为一种深度学习框架,在无监督学习领域展现出强大的能力,特别在图像、音频、文本等复杂数据的生成任务中取得了显著成果。然而,原始GAN模型在生成过程中缺乏对生成样本特定属性的直
- PyTorch实战(13)——WGAN详解与实现
盼小辉丶
pytorch人工智能python
PyTorch实战(13)——WGAN详解与实现0.前言1.WGAN与梯度惩罚2.WGAN工作原理2.1Wasserstein损失2.2Lipschitz约束2.3强制Lipschitz约束3.实现WGAN3.1数据加载与处理3.2模型构建3.3模型训练小结系列链接0.前言生成对抗网络(GenerativeAdversarialNetwork,GAN)模型训练过程通常会面临一些问题,如模式崩溃(生
- AI绘画与时尚设计:用AI创造前卫服装设计
AIGC应用创新大全
AI作画人工智能ai
AI绘画与时尚设计:用AI创造前卫服装设计关键词:AI绘画、时尚设计、生成对抗网络、创意辅助、服装设计流程、风格迁移、3D服装建模摘要:本文将探讨AI如何革新时尚设计领域,从创意构思到成品展示的全流程。我们将了解AI绘画技术在服装设计中的应用原理,分析实际案例,并展望这一技术对未来时尚产业的影响。文章将用通俗易懂的方式解释复杂的技术概念,帮助读者理解AI如何成为设计师的"数字创意伙伴"。背景介绍目
- 第G1周:生成对抗网络(GAN)入门
本文为365天深度学习训练营原作者:K同学啊基础任务:1.了解什么是生成对抗网络2.生成对抗网络结构是怎么样的3.学习本文代码,并跑通代码进阶任务:调用训练好的模型生成新图像一、理论基础生成对抗网络(GenerativeAdversarialNetworks,GAN)是近年来深度学习领域的一个热点方向。GAN并不指代某一个具体的神经网络,而是指一类基于博弈思想而设计的神经网络。GAN由两个分别被称
- 数字人视频剪辑与数字人分身源码开发的的核心技术解析
微~18339948121
数字人分身源码数字人剪辑源码数字人源码djangopygamevirtualenvplotlyscikit-learnflasktornado
数字人视频剪辑与分身的核心技术解析数字人视频剪辑和分身技术是近年来人工智能与计算机视觉领域的热点,涉及虚拟形象生成、动作驱动、语音合成等多项技术。以下从技术实现、应用场景和工具选择三个方面展开分析。数字人视频剪辑的关键技术视频剪辑中数字人的核心在于动态形象的生成与编辑。基于深度学习的生成对抗网络(GAN)和3D建模技术可实现高保真虚拟形象构建。典型流程包括:人物建模:通过多视角图像或视频数据重建3
- [2025CVPR]DE-GANs:一种高效的生成对抗网络
清风AI
深度学习算法详解及代码复现生成对抗网络人工智能神经网络
目录引言:数据高效GAN的困境核心原理:动态质量筛选机制1.判别器拒绝采样(DRS)的再思考2.质量感知动态拒绝公式(1)质量感知阶段(2)动态拒绝阶段模型架构:轻量化设计技术突破:三大创新点1.首创训练阶段DRS2.动态拒绝机制3.质量重加权策略实验验证:全面性能提升1.数据集与指标2.对比实验结果(1)低样本数据集(2)FFHQ数据集代码解析:关键实现细节对比结果:全面超越现有方法1.低样本数
- StackGAN(堆叠生成对抗网络)的介绍
简介简介:本文提出了StackGAN(堆叠生成对抗网络),解决从文本描述生成高分辨率照片级真实图像的挑战。该方法将复杂的生成任务分解为两个阶段:Stage-IGAN生成64×64的粗糙轮廓和基本颜色,Stage-IIGAN基于Stage-I结果和文本描述生成256×256的高分辨率图像并修正缺陷。同时引入条件增强技术提高训练稳定性和样本多样性。论文题目:StackGAN:TexttoPhoto-r
- StackGAN(堆叠生成对抗网络)
这张生成的图像能检测吗
优质GAN模型训练自己的数据集生成对抗网络人工智能神经网络计算机视觉深度学习算法
简介简介:本文提出了StackGAN(堆叠生成对抗网络),解决从文本描述生成高分辨率照片级真实图像的挑战。该方法将复杂的生成任务分解为两个阶段:Stage-IGAN生成64×64的粗糙轮廓和基本颜色,Stage-IIGAN基于Stage-I结果和文本描述生成256×256的高分辨率图像并修正缺陷。同时引入条件增强技术提高训练稳定性和样本多样性。论文题目:StackGAN:TexttoPhoto-r
- 生成式人工智能实战 | 深度卷积生成对抗网络(Deep Convolutional Generative Adversarial Network, DCGAN)
盼小辉丶
生成式人工智能实战150讲人工智能生成对抗网络神经网络
生成式人工智能实战|深度卷积生成对抗网络0.前言1.模型与数据集分析1.1模型分析1.2数据集介绍2.构建DCGAN生成人脸图像2.1数据处理2.2模型构建2.3模型训练0.前言深度卷积生成对抗网络(DeepConvolutionalGenerativeAdversarialNetworks,DCGAN)是基于生成对抗网络(ConvolutionalGenerativeAdversarialNet
- Python 里 PyTorch 的生成对抗网络架构
Python编程之道
pythonpytorch生成对抗网络ai
Python里PyTorch的生成对抗网络架构关键词:PyTorch、生成对抗网络(GAN)、深度学习、神经网络、计算机视觉、对抗训练、生成模型摘要:本文深入探讨了在PyTorch框架下实现生成对抗网络(GAN)的完整架构。我们将从GAN的基本原理出发,详细讲解其核心组件、数学基础,并通过PyTorch代码实现一个完整的GAN模型。文章涵盖了从理论到实践的各个方面,包括模型设计、训练技巧、常见问题
- GAN中的SSIM指标:图像质量评估的利器
这张生成的图像能检测吗
GAN系列人工智能计算机视觉算法生成对抗网络机器学习深度学习
GAN中的SSIM指标:图像质量评估的利器在生成对抗网络(GAN)的研究和应用中,如何客观地评估生成图像的质量一直是一个关键问题。传统的像素级指标如MSE和PSNR往往无法很好地反映人眼对图像质量的感知。而SSIM(StructuralSimilarityIndexMeasure,结构相似性指数)作为一种更贴近人类视觉感知的图像质量评估指标,在GAN的评估体系中发挥着重要作用。SSIM指标概述什么
- 【图像处理入门】11. 深度学习初探:从CNN到GAN的视觉智能之旅
小米玄戒Andrew
图像处理:从入门到专家深度学习图像处理cnn计算机视觉CVGAN
摘要深度学习为图像处理注入了革命性动力。本文将系统讲解卷积神经网络(CNN)的核心原理,通过PyTorch实现图像分类实战;深入解析迁移学习的高效应用策略,利用预训练模型提升自定义任务性能;最后揭开生成对抗网络(GAN)的神秘面纱,展示图像生成与增强的前沿技术。结合代码案例与可视化分析,帮助读者跨越传统算法与深度学习的技术鸿沟。一、卷积神经网络(CNN)基础与实战1.CNN的核心组件与工作原理1.
- AIGC虚拟人物VS传统3D建模:技术对比与优劣势分析
AI原生应用开发
AI原生应用开发AIGC3dai
AIGC虚拟人物VS传统3D建模:技术对比与优劣势分析关键词:AIGC虚拟人物、传统3D建模、生成对抗网络、三维重建、数字孪生、自动化生成、手工建模摘要:本文从技术原理、实现流程、应用场景等维度,深入对比AIGC(人工智能生成内容)虚拟人物与传统3D建模技术。通过剖析核心算法、数学模型和工程实践案例,揭示两者在生产效率、成本控制、艺术表现力等方面的差异。结合具体代码实现和行业应用场景,分析各自的优
- 基于深度学习的图像生成技术:GAN的进阶探索与应用实践
赵大仁
深度学习生成对抗网络人工智能
生成对抗网络(GAN)自2014年提出以来,已成为深度学习领域的研究热点。其强大的图像生成能力在众多领域展现出无限潜力。本文将深入探讨GAN的高级技术,分享实践经验,并分析当前GAN研究的最新进展。一、GAN的核心原理回顾生成对抗网络(GAN)由生成器(Generator)和判别器(Discriminator)组成,两者通过对抗性训练过程不断优化。生成器的目标是生成能够欺骗判别器的样本,而判别器的
- 基于深度学习的智能图像风格转换系统:技术与实践
Blossom.118
机器学习与人工智能深度学习人工智能机器学习机器人神经网络pythonsklearn
前言图像风格转换是一种将一张图像的内容与另一张图像的风格相结合的技术,广泛应用于艺术创作、图像编辑和视觉特效等领域。近年来,深度学习技术,尤其是卷积神经网络(CNN)和生成对抗网络(GAN),为图像风格转换带来了革命性的进展。本文将详细介绍基于深度学习的智能图像风格转换系统的原理、实现方法以及实际应用案例。一、图像风格转换的基本概念1.1什么是图像风格转换?图像风格转换是一种图像处理技术,其目标是
- 生成对抗网络(GAN)与深度生成模型实战
软考和人工智能学堂
人工智能Python开发经验#DeepSeek快速入门开发语言
1.生成模型基础与GAN原理1.1生成模型概览生成模型是深度学习中的重要分支,主要分为以下几类:变分自编码器(VAE):基于概率图模型的生成方法生成对抗网络(GAN):通过对抗训练学习数据分布自回归模型:PixelCNN、WaveNet等流模型(Flow-basedModels):基于可逆变换的精确密度估计扩散模型(DiffusionModels):最新兴起的生成方法1.2GAN核心思想GAN由生
- 机器学习在智能水泥基复合材料中的应用与实践
m0_75133639
复合材料复合材料机器学习人工智能水泥基材料科学电力工业航空航天科学
会议背景人工智能与材料科学的深度融合正推动复合材料研究进入新阶段。本次会议聚焦机器学习在智能水泥基复合材料中的创新应用,涵盖材料设计优化、性能预测、缺陷检测及寿命管理等前沿方向,为跨学科研究提供方法论支持。会议亮点1.前沿技术融合围绕材料科学核心挑战(如强度预测、小样本数据分析),系统讲解:物理信息神经网络(PINNs):融合物理定律解决材料力学问题生成对抗网络(GAN):实现复合材料数据增强可解
- AIGC 音乐:满足音乐创作的个性化定制需求
SuperAGI2025
AIGCai
AIGC音乐:满足音乐创作的个性化定制需求关键词:AIGC音乐、人工智能音乐生成、个性化音乐创作、音乐AI模型、深度学习音乐、音乐风格迁移、自动作曲摘要:本文深入探讨了AIGC(人工智能生成内容)在音乐创作领域的应用,重点分析了如何利用AI技术满足个性化音乐定制需求。文章从技术原理出发,详细介绍了音乐AI的核心算法和模型架构,包括音乐表示学习、生成对抗网络(GAN)在音乐生成中的应用、Transf
- 一文读懂特征对齐:多模态世界的“月老红线”
.别止步春天.
人工智能计算机视觉深度学习
文章目录1、引言2、啥是多模态数据3、为啥要特征对齐4、特征对齐是咋干活的5、特征对齐的应用场景6、多模态领域里特征对齐的方法6.1基于神经网络架构设计6.2基于注意力机制6.3基于损失函数设计6.4基于生成对抗网络(GAN)7、总结1、引言嘿,各位技术宅们!今天咱来唠唠多模态领域里一个超有趣又超重要的概念——特征对齐(FeatureAlignment)。这玩意儿就像是多模态世界里的“月老”,牵起
- 边缘计算算法与自动驾驶安全优化实践
智能计算研究中心
其他
内容概要在自动驾驶系统的安全优化进程中,边缘计算算法通过分布式算力部署与实时数据处理能力,为车辆决策层构建了低时延、高容错的技术底座。本文系统性分析联邦学习与生成对抗网络(GAN)的融合机制,在保护数据隐私的同时提升多节点模型的动态适应能力,并通过可解释性算法对决策逻辑进行可视化解析,增强系统透明度。针对复杂行车场景,数据预处理与特征工程的双向协同显著优化了障碍物识别与路径规划的鲁棒性,结合F1值
- 深度学习驱动的低照度图像质量提升技术
本文还有配套的精品资源,点击获取简介:低照度图像常伴有噪声问题如粉尘和雾,影响图像质量和后续分析。本技术采用深度学习模型,特别是卷积神经网络(CNN)及其变种如条件生成对抗网络(CGAN),提升低照度图像的可见度和质量。CGAN通过引入条件变量来增强图像清晰度,而去雾算法基于大气散射模型学习逆向操作以去除雾气。此外,PyTorch框架被用于实现该技术,包含源代码、数据集、预训练模型、结果示例和文档
- 基于 TensorFlow 2 的 WGAN来生成表格数据、数值数据和序列数据。 WGAN生成对抗网络。代码仅供参考
QQ67658008
tensorflow生成对抗网络neo4jWGAN表格数据序列数据对抗网络
WGAN生成对抗网络基于pythontensorflow2以下框架,环境应该如何自己配置?表格数据、数值数据,序列数据生成里面是一个标准函数的数据,读取自己数据需要自己改。可以随意替换纬度,需要自己手动改.如何配置环境并编写一个基于TensorFlow2的WGAN(WassersteinGenerativeAdversarialNetwork)来生成表格数据、数值数据和序列数据。我们将使用标准函数
- AIGC(Artificial Intelligence Generated Content)
ArtificialIntelligenceGeneratedContent概念定义人工智能生成内容,是指基于生成对抗网络、大型预训练模型等人工智能的技术方法,通过已有数据的学习和识别,以适当的泛化能力生成相关内容的技术。AIGC技术的核心思想是利用人工智能算法生成具有一定创意和质量的内容。通过训练模型和大量数据的学习,AIGC可以根据输入的条件或指导,生成与之相关的内容。例如,通过输入关键词、描
- rust的指针作为函数返回值是直接传递,还是先销毁后创建?
wudixiaotie
返回值
这是我自己想到的问题,结果去知呼提问,还没等别人回答, 我自己就想到方法实验了。。
fn main() {
let mut a = 34;
println!("a's addr:{:p}", &a);
let p = &mut a;
println!("p's addr:{:p}", &a
- java编程思想 -- 数据的初始化
百合不是茶
java数据的初始化
1.使用构造器确保数据初始化
/*
*在ReckInitDemo类中创建Reck的对象
*/
public class ReckInitDemo {
public static void main(String[] args) {
//创建Reck对象
new Reck();
}
}
- [航天与宇宙]为什么发射和回收航天器有档期
comsci
地球的大气层中有一个时空屏蔽层,这个层次会不定时的出现,如果该时空屏蔽层出现,那么将导致外层空间进入的任何物体被摧毁,而从地面发射到太空的飞船也将被摧毁...
所以,航天发射和飞船回收都需要等待这个时空屏蔽层消失之后,再进行
&
- linux下批量替换文件内容
商人shang
linux替换
1、网络上现成的资料
格式: sed -i "s/查找字段/替换字段/g" `grep 查找字段 -rl 路径`
linux sed 批量替换多个文件中的字符串
sed -i "s/oldstring/newstring/g" `grep oldstring -rl yourdir`
例如:替换/home下所有文件中的www.admi
- 网页在线天气预报
oloz
天气预报
网页在线调用天气预报
<%@ page language="java" contentType="text/html; charset=utf-8"
pageEncoding="utf-8"%>
<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transit
- SpringMVC和Struts2比较
杨白白
springMVC
1. 入口
spring mvc的入口是servlet,而struts2是filter(这里要指出,filter和servlet是不同的。以前认为filter是servlet的一种特殊),这样就导致了二者的机制不同,这里就牵涉到servlet和filter的区别了。
参见:http://blog.csdn.net/zs15932616453/article/details/8832343
2
- refuse copy, lazy girl!
小桔子
copy
妹妹坐船头啊啊啊啊!都打算一点点琢磨呢。文字编辑也写了基本功能了。。今天查资料,结果查到了人家写得完完整整的。我清楚的认识到:
1.那是我自己觉得写不出的高度
2.如果直接拿来用,很快就能解决问题
3.然后就是抄咩~~
4.肿么可以这样子,都不想写了今儿个,留着作参考吧!拒绝大抄特抄,慢慢一点点写!
- apache与php整合
aichenglong
php apache web
一 apache web服务器
1 apeche web服务器的安装
1)下载Apache web服务器
2)配置域名(如果需要使用要在DNS上注册)
3)测试安装访问http://localhost/验证是否安装成功
2 apache管理
1)service.msc进行图形化管理
2)命令管理,配
- Maven常用内置变量
AILIKES
maven
Built-in properties
${basedir} represents the directory containing pom.xml
${version} equivalent to ${project.version} (deprecated: ${pom.version})
Pom/Project properties
Al
- java的类和对象
百合不是茶
JAVA面向对象 类 对象
java中的类:
java是面向对象的语言,解决问题的核心就是将问题看成是一个类,使用类来解决
java使用 class 类名 来创建类 ,在Java中类名要求和构造方法,Java的文件名是一样的
创建一个A类:
class A{
}
java中的类:将某两个事物有联系的属性包装在一个类中,再通
- JS控制页面输入框为只读
bijian1013
JavaScript
在WEB应用开发当中,增、删除、改、查功能必不可少,为了减少以后维护的工作量,我们一般都只做一份页面,通过传入的参数控制其是新增、修改或者查看。而修改时需将待修改的信息从后台取到并显示出来,实际上就是查看的过程,唯一的区别是修改时,页面上所有的信息能修改,而查看页面上的信息不能修改。因此完全可以将其合并,但通过前端JS将查看页面的所有信息控制为只读,在信息量非常大时,就比较麻烦。
- AngularJS与服务器交互
bijian1013
JavaScriptAngularJS$http
对于AJAX应用(使用XMLHttpRequests)来说,向服务器发起请求的传统方式是:获取一个XMLHttpRequest对象的引用、发起请求、读取响应、检查状态码,最后处理服务端的响应。整个过程示例如下:
var xmlhttp = new XMLHttpRequest();
xmlhttp.onreadystatechange
- [Maven学习笔记八]Maven常用插件应用
bit1129
maven
常用插件及其用法位于:http://maven.apache.org/plugins/
1. Jetty server plugin
2. Dependency copy plugin
3. Surefire Test plugin
4. Uber jar plugin
1. Jetty Pl
- 【Hive六】Hive用户自定义函数(UDF)
bit1129
自定义函数
1. 什么是Hive UDF
Hive是基于Hadoop中的MapReduce,提供HQL查询的数据仓库。Hive是一个很开放的系统,很多内容都支持用户定制,包括:
文件格式:Text File,Sequence File
内存中的数据格式: Java Integer/String, Hadoop IntWritable/Text
用户提供的 map/reduce 脚本:不管什么
- 杀掉nginx进程后丢失nginx.pid,如何重新启动nginx
ronin47
nginx 重启 pid丢失
nginx进程被意外关闭,使用nginx -s reload重启时报如下错误:nginx: [error] open() “/var/run/nginx.pid” failed (2: No such file or directory)这是因为nginx进程被杀死后pid丢失了,下一次再开启nginx -s reload时无法启动解决办法:nginx -s reload 只是用来告诉运行中的ng
- UI设计中我们为什么需要设计动效
brotherlamp
UIui教程ui视频ui资料ui自学
随着国际大品牌苹果和谷歌的引领,最近越来越多的国内公司开始关注动效设计了,越来越多的团队已经意识到动效在产品用户体验中的重要性了,更多的UI设计师们也开始投身动效设计领域。
但是说到底,我们到底为什么需要动效设计?或者说我们到底需要什么样的动效?做动效设计也有段时间了,于是尝试用一些案例,从产品本身出发来说说我所思考的动效设计。
一、加强体验舒适度
嗯,就是让用户更加爽更加爽的用你的产品。
- Spring中JdbcDaoSupport的DataSource注入问题
bylijinnan
javaspring
参考以下两篇文章:
http://www.mkyong.com/spring/spring-jdbctemplate-jdbcdaosupport-examples/
http://stackoverflow.com/questions/4762229/spring-ldap-invoking-setter-methods-in-beans-configuration
Sprin
- 数据库连接池的工作原理
chicony
数据库连接池
随着信息技术的高速发展与广泛应用,数据库技术在信息技术领域中的位置越来越重要,尤其是网络应用和电子商务的迅速发展,都需要数据库技术支持动 态Web站点的运行,而传统的开发模式是:首先在主程序(如Servlet、Beans)中建立数据库连接;然后进行SQL操作,对数据库中的对象进行查 询、修改和删除等操作;最后断开数据库连接。使用这种开发模式,对
- java 关键字
CrazyMizzz
java
关键字是事先定义的,有特别意义的标识符,有时又叫保留字。对于保留字,用户只能按照系统规定的方式使用,不能自行定义。
Java中的关键字按功能主要可以分为以下几类:
(1)访问修饰符
public,private,protected
p
- Hive中的排序语法
daizj
排序hiveorder byDISTRIBUTE BYsort by
Hive中的排序语法 2014.06.22 ORDER BY
hive中的ORDER BY语句和关系数据库中的sql语法相似。他会对查询结果做全局排序,这意味着所有的数据会传送到一个Reduce任务上,这样会导致在大数量的情况下,花费大量时间。
与数据库中 ORDER BY 的区别在于在hive.mapred.mode = strict模式下,必须指定 limit 否则执行会报错。
- 单态设计模式
dcj3sjt126com
设计模式
单例模式(Singleton)用于为一个类生成一个唯一的对象。最常用的地方是数据库连接。 使用单例模式生成一个对象后,该对象可以被其它众多对象所使用。
<?phpclass Example{ // 保存类实例在此属性中 private static&
- svn locked
dcj3sjt126com
Lock
post-commit hook failed (exit code 1) with output:
svn: E155004: Working copy 'D:\xx\xxx' locked
svn: E200031: sqlite: attempt to write a readonly database
svn: E200031: sqlite: attempt to write a
- ARM寄存器学习
e200702084
数据结构C++cC#F#
无论是学习哪一种处理器,首先需要明确的就是这种处理器的寄存器以及工作模式。
ARM有37个寄存器,其中31个通用寄存器,6个状态寄存器。
1、不分组寄存器(R0-R7)
不分组也就是说说,在所有的处理器模式下指的都时同一物理寄存器。在异常中断造成处理器模式切换时,由于不同的处理器模式使用一个名字相同的物理寄存器,就是
- 常用编码资料
gengzg
编码
List<UserInfo> list=GetUserS.GetUserList(11);
String json=JSON.toJSONString(list);
HashMap<Object,Object> hs=new HashMap<Object, Object>();
for(int i=0;i<10;i++)
{
- 进程 vs. 线程
hongtoushizi
线程linux进程
我们介绍了多进程和多线程,这是实现多任务最常用的两种方式。现在,我们来讨论一下这两种方式的优缺点。
首先,要实现多任务,通常我们会设计Master-Worker模式,Master负责分配任务,Worker负责执行任务,因此,多任务环境下,通常是一个Master,多个Worker。
如果用多进程实现Master-Worker,主进程就是Master,其他进程就是Worker。
如果用多线程实现
- Linux定时Job:crontab -e 与 /etc/crontab 的区别
Josh_Persistence
linuxcrontab
一、linux中的crotab中的指定的时间只有5个部分:* * * * *
分别表示:分钟,小时,日,月,星期,具体说来:
第一段 代表分钟 0—59
第二段 代表小时 0—23
第三段 代表日期 1—31
第四段 代表月份 1—12
第五段 代表星期几,0代表星期日 0—6
如:
*/1 * * * * 每分钟执行一次。
*
- KMP算法详解
hm4123660
数据结构C++算法字符串KMP
字符串模式匹配我们相信大家都有遇过,然而我们也习惯用简单匹配法(即Brute-Force算法),其基本思路就是一个个逐一对比下去,这也是我们大家熟知的方法,然而这种算法的效率并不高,但利于理解。
假设主串s="ababcabcacbab",模式串为t="
- 枚举类型的单例模式
zhb8015
单例模式
E.编写一个包含单个元素的枚举类型[极推荐]。代码如下:
public enum MaYun {himself; //定义一个枚举的元素,就代表MaYun的一个实例private String anotherField;MaYun() {//MaYun诞生要做的事情//这个方法也可以去掉。将构造时候需要做的事情放在instance赋值的时候:/** himself = MaYun() {*
- Kafka+Storm+HDFS
ssydxa219
storm
cd /myhome/usr/stormbin/storm nimbus &bin/storm supervisor &bin/storm ui &Kafka+Storm+HDFS整合实践kafka_2.9.2-0.8.1.1.tgzapache-storm-0.9.2-incubating.tar.gzKafka安装配置我们使用3台机器搭建Kafk
- Java获取本地服务器的IP
中华好儿孙
javaWeb获取服务器ip地址
System.out.println("getRequestURL:"+request.getRequestURL());
System.out.println("getLocalAddr:"+request.getLocalAddr());
System.out.println("getLocalPort:&quo