Python爬虫爬取《哪吒之魔童降世》影评并分析

  1. 手机打开全部评论。

    Python爬虫爬取《哪吒之魔童降世》影评并分析_第1张图片

  2. 复制链接到电脑开发者选项打开。

    Python爬虫爬取《哪吒之魔童降世》影评并分析_第2张图片

  3. 评论是动态加载的,向下滑动找到影评json数据。

    Python爬虫爬取《哪吒之魔童降世》影评并分析_第3张图片

  4. Python代码。
import pymongo
import requests
import json

#获取数据库的主机名,端口名和数据库名
host = "主机名"
port = 端口名
dbname = "Comments"
#创建数据库的连接
client = pymongo.MongoClient(host = host, port = port)
#指向指定的数据库
mdb = client[dbname]
#获取数据库里面存放数据的表名
post = mdb["Comment_items"]

def get_response(url):
    """
    获取response
    :param url: 地址
    :return:
    """
    User_Agent = "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/73.0.3683.103 Safari/537.36"
    headers = {"User-Agent":User_Agent}
    response = requests.get(url=url,headers=headers)
    if response.status_code == 200:
        # print(response.text)
        get_single_comments(response.text)

def get_single_comments(text):
    """
    获取评论
    :param text: response.text
    :return:
    """
    temp_store = {}   #暂时存储一页的评论
    # print(json.loads(text))
    data = (json.loads(text)).get("data")
    # print(data)
    comments = data.get('comments')
    for comment in comments:
        # print(comment)
        temp_store["nick"] = comment.get("nick")
        temp_store["gender"] = comment.get("gender")
        temp_store["score"] = comment.get("score")
        temp_store["comments"] = comment.get("content")
        temp_store["userLevel"] = comment.get("userLevel")
        store.append(temp_store)
        temp_store = {}

def store_comments(comment):
    """
    保存评论
    :param comments: comments
    :return:
    """
    post.insert(comment)    #保存在MongoDB数据库

num = 15   #用来设置offset的值
store = []
for i in range(5):
    num *= i+1
    url = "http://m.maoyan.com/review/v2/comments.json?movieId=1211270&userId=-1&offset={}&limit=15&ts=1564738457916&type=3".format(num)
    get_response(url=url)
    num = 15

store_comments(store)
  1. 爬取效果。

    Python爬虫爬取《哪吒之魔童降世》影评并分析_第4张图片

  2. 简单分析(简单的数据可视化)
  • 评分分析:
    • 图表:
      Python爬虫爬取《哪吒之魔童降世》影评并分析_第5张图片
    • 图表显示,评分9-10分占绝大多数,说明观众对这部动漫反响是极好的。
    • 代码示例:
     import pymongo
     import matplotlib.pyplot as plt
     
     #连接数据库
     client = pymongo.MongoClient(host="localhost",port=27017)
     db = client["Comments"]
     doc = db["Comment_items"]
     #找到全部的评论
     data = doc.find()
     
     all_score = []
    
     for item in data:
         #获取全部的分数
         all_score.append(item["score"])
         
     length = len(all_score)
     
     #三个类别
     labels = ["10-9","8-6","5-1"]
     label_one = 0
     label_two = 0
     label_three = 0
     sizes = []
     
     for score in all_score:
         if score >= 9:
             label_one += 1
         if score >= 6 and score <= 8:
             label_two += 1
         if score <= 5:
             label_three += 1
     
     sizes.append(label_one/ length)
     sizes.append(label_two/ length)
     sizes.append(label_three/ length)
     
     plt.pie(sizes, labels=labels, explode=(0.1, 0, 0), shadow=True, autopct="%1.3f%%")
     plt.title("Score Pie",loc='center')
     plt.axis("equal")   #画成圆
     plt.legend()
     plt.show()
    
  • 性别比例:
    • 图表:
      Python爬虫爬取《哪吒之魔童降世》影评并分析_第6张图片
    • 男女分配比较均匀,看来哪吒与敖丙这对cp男女通吃呀,哈哈哈。
    • 代码示例:
     import pymongo
     import matplotlib.pyplot as plt
     
     #连接数据库
     client = pymongo.MongoClient(host="localhost",port=27017)
     db = client["Comments"]
     doc = db["Comment_items"]
     #查找评论
     data = doc.find()
     
     all_gender = []
     for item in data:
         all_gender.append(item["gender"])
    
     gender_length = len(all_gender)
    
     labels = ["man","women","unknow"]
     
     man = 0
     women = 0
     unknow = 0
     sizes = []
     
     for gender in all_gender:
         if gender == 0:
             man += 1
         if gender == 1:
             women += 1
         if gender == 2:
             unknow += 1
     
     sizes.append(man/gender_length)
     sizes.append(women/gender_length)
     sizes.append(unknow/gender_length)
     
     plt.pie(sizes,explode=(0.1,0.1,0),labels=labels,autopct="%1.3f%%",shadow=True)
     plt.title("Gender Pie",loc="center")
     plt.axis("equal")
     plt.legend()
     plt.show()
    
  • 用户等级:
    • 图表:
      Python爬虫爬取《哪吒之魔童降世》影评并分析_第7张图片
    • 用户等级1-3级居多,4-5级较少。
    • 代码示例:
     import pymongo
     import matplotlib.pyplot as plt
     
     #连接数据库
     client = pymongo.MongoClient(host="localhost",port=27017)
     db = client["Comments"]
     doc = db["Comment_items"]
     #查询全部的评论
     data = doc.find()
     
     all_level = []
     for item in data:
         all_level.append(item["userLevel"])
    
     level_length = len(all_level)
    
     x = [1,2,3,4,5]
     labels = ["1","2","3","4","5"]
     
     sizes = [0,0,0,0,0]
     
     for level in all_level:   #对等级分类
         sizes[level-1] += 1
     
     plt.bar(x,sizes,alpha=0.7,color=["red","yellow","blue","purple","orange"],tick_label=labels)
     #alpha表示透明度
     plt.title("User Level")
     plt.ylabel("Num")
     plt.xlabel("Level")
     plt.show()
    
  • 热词展示:
    • 图表:
      Python爬虫爬取《哪吒之魔童降世》影评并分析_第8张图片
    • 从热词图上看出评论极大部分是说这部动漫是好看的,之后是哪吒,不错等等。
    • 代码示例:
     # -*- coding:utf-8 -*-
     import pymongo
     import matplotlib.pyplot as plt
     import jieba  #jieba分词
     from wordcloud import WordCloud,ImageColorGenerator
     import numpy as np
     import cv2   #用来读取图片
     import matplotlib as mpl
     
     mpl.rcParams['font.sans-serif'] = ['SimHei']
     txt_path = "D:/test.txt"   #txt文件位置
     font_path = "C:/windows/fonts/simfang.ttf"   #字体位置
     img_path = "D:/beauty.jpg"   #背景图片位置
     background_image = np.array(cv2.imread(img_path))
     
     #Click MongoDB database
     client = pymongo.MongoClient(host="localhost",port=27017)
     db = client["Comments"]
     doc = db["Comment_items"]
     #Find all data(Cursor)
     data = doc.find()
     
     all_comments = []
     for item in data:
         all_comments.append(item["comments"])
         
     data = open("D:/test.txt","a",encoding="utf-8")
     print(all_comments)
     for comment in all_comments:
         data.write(comment)
     data.close()
     print("写入完毕!")
     
     t = open(txt_path,"r",encoding="utf-8").read()
     cut_text = " ".join(jieba.cut(t))
     wordcloud = WordCloud(font_path,mask=background_image,background_color="white").generate(cut_text)
     image_color = ImageColorGenerator(background_image)
     
     plt.imshow(wordcloud.recolor(color_func=image_color),interpolation="bilinear")
     plt.show()
    

如果有任何疑问可下方留言给小g

你可能感兴趣的:(爬虫)