- YOLOv5的Conv是什么,Conv就是卷积吗(1)
hjs314159
YOLO深度学习人工智能
不论是看YOLOv5还是最新的YOLOv12的网络结构,里面都有一个看起来雷打不动的部分,ConvConvolutionConvolution是卷积的意思,我们看一张图来简单理解一下神经网络里面的卷积的过程是什么样的。卷积一定是一个输入矩阵(特征)和一个卷积核矩阵做图中这样的计算。我们可以想象输入的就是一张单通道的黑白图像,特征矩阵的每一个数字代表了颜色的深浅(简单理解)。卷积核就相当于一个特征提
- 【故障诊断】三角测量拓扑聚合器优化双向时间卷积神经网络TTAO-BiTCN轴承数据故障诊断【含Matlab源码 5101期】
Matlab武动乾坤
matlab
Matlab武动乾坤博客之家
- 基于Python深度学习的【害虫识别】系统~卷积神经网络+TensorFlow+图像识别+人工智能
图像识别人工智能深度学习
一、介绍害虫识别系统,本系统使用Python作为主要开发语言,基于TensorFlow搭建卷积神经网络算法,并收集了12种常见的害虫种类数据集【"蚂蚁(ants)","蜜蜂(bees)","甲虫(beetle)","毛虫(catterpillar)","蚯蚓(earthworms)","蜚蠊(earwig)","蚱蜢(grasshopper)","飞蛾(moth)","鼻涕虫(slug)","蜗牛
- 成为LLM大师的必读书籍:这几本大模型书籍,详细到让你一篇文章就收藏足够
AGI大模型老王
产品经理大模型教程学习大模型人工智能LLM大模型书籍
以下是几本关于大模型和人工智能领域的经典书籍,它们各自具有独特的特点和适用人群:《深度学习》(DeepLearning)作者:伊恩·古德费洛(IanGoodfellow)、约书亚·本吉奥(YoshuaBengio)、亚伦·库维尔(AaronCourville)简介:《深度学习》是深度学习领域的经典之作,全面介绍了深度学习的基础知识、主要模型及其应用。书中详细讲解了神经网络、卷积神经网络、循环神经网
- TensorFlow.js - 使用 CNN(卷积神经网络) 识别手写数字
宁静_致远_
前端开发javascripttensorflowcnn
目录index.htmldata.jsscript.js备注参考文献index.htmlTensorFlow.jsTutorialdata.js/***@license*Copyright2018GoogleLLC.AllRightsReserved.*LicensedundertheApacheLicense,Version2.0(the"License");*youmaynotusethisf
- 卷积神经网络应用-训练手写体数字数据集并展示识别精度
yeahamen
深度学习python机器学习卷积神经网络手写体数字识别
#卷积神经网络(CNN)训练手写体数据集importnumpyasnpimportmatplotlib.pyplotaspltimporttensorflow.kerasaskaimportdatetime#python3.X版本显示图片还需导入此库importpylabnp.random.seed(0)#定义加载数据集函数defload_data_npz(path):#np.load文件可以加载
- 深度学习实战:用TensorFlow构建高效CNN的完整指南
芯作者
DD:日记深度学习
一、为什么每个开发者都要掌握CNN?在自动驾驶汽车识别路标的0.1秒里,在医疗AI诊断肺部CT片的精准分析中,甚至在手机相册自动分类宠物的日常场景里,卷积神经网络(CNN)正悄然改变着我们的世界。本文将以工业级实践标准,带您从零构建一个在CIFAR-10数据集上达到90%+准确率的CNN模型,深入解析TensorFlow2.x的最新特性,并揭秘模型优化的七大核心策略。[外链图片转存失败,源站可能有
- TensorFlow\Keras实战100例——BP\CNN神经网络~MINST手写数字识别
AI街潜水的八角
tensorflow人工智能python
一.原理说明BP神经网络是一种多层的前馈神经网络,其主要的特点是:信号是前向传播的,而误差是反向传播的。具体来说,对于如下的只含一个隐层的神经网络模型:BP神经网络的过程主要分为两个阶段,第一阶段是信号的前向传播,从输入层经过隐含层,最后到达输出层;第二阶段是误差的反向传播,从输出层到隐含层,最后到输入层,依次调节隐含层到输出层的权重和偏置,输入层到隐含层的权重和偏置。卷积神经网络(Convolu
- 从专利数据中提取IPC代码,构建共现矩阵(IPC共同出现在同一专利为1,否则为0),利用GCN提取特征,并进行链路预测以评估IPC之间的相似度概率
pk_xz123456
算法深度学习矩阵线性代数
要完成这个任务,你可以按照以下步骤进行:数据预处理:从专利数据中提取IPC代码,并构建共现矩阵。图卷积网络(GCN):使用GCN提取特征。链路预测:评估IPC之间的相似度概率。以下是一个Python示例代码,展示了如何完成上述任务:importnumpyasnpimportnetworkxasnximporttorchimporttorch.nnasnnimporttorch.nn.functio
- 沃丰科技AI浅谈|语音交互的三驾马车:ASR、NLP、TTS
沃丰科技
人工智能科技自然语言处理
在日常生活中,AI机器人离我们很近。你是否接到过这样的电话:“您好,检测到您已经购买某产品一周的时间了,请问您的使用感受如何?”“请问您对产品满意吗?有什么建议给到这边吗?”全程对话亲切无障碍,您可能觉得这是一个大型企业对于用户的恳切关注。如果我告诉您,这都是由外呼机器人拨打并且能够自行记录下您的意见和建议,以供企业改进,您会惊讶吗?基于深度神经学算法和卷积神经网络算法的AI外呼机器人,它是融合自
- 《YOLOv12魔术师专栏》专栏介绍 & 专栏目录
AI小怪兽
YOLOv811v12成长师YOLO深度学习人工智能目标检测计算机视觉
《YOLOv12魔术师专栏》将从以下各个方向进行创新(更新日期25.03.05):【原创自研模块】【多组合点优化】【注意力机制】【主干篇】【neck优化】【卷积魔改】【block&多尺度融合结合】【损失&IOU优化】【上下采样优化】【小目标性能提升】【前沿论文分享】【训练实战篇】订阅者可以申请发票,便于报销定期向订阅者提供源码工程+windows编译好的环境,配合博客使用《YOLOv12魔术师专栏
- QKV 注意力机制在Transformer架构中的作用,和卷积在卷积神经网络中的地位,有哪些相似之处?
安意诚Matrix
机器学习笔记transformercnn深度学习
QKV注意力机制在Transformer架构中的作用,和卷积在卷积神经网络中的地位,有哪些相似之处?QKV(Query-Key-Value)注意力机制在Transformer架构和卷积在卷积神经网络(CNN)中都起着核心作用,它们有以下一些相似之处:特征提取QKV注意力机制:在Transformer中,QKV注意力机制通过Query与Key的计算来确定对不同位置Value的关注程度,从而自适应地提
- 深入理解 Transformer:用途、原理和示例
范吉民(DY Young)
简单AI学习transformer深度学习人工智能
深入理解Transformer:用途、原理和示例一、Transformer是什么Transformer是一种基于注意力机制(AttentionMechanism)的深度学习架构,在2017年的论文“AttentionIsAllYouNeed”中惊艳登场。它打破了传统循环神经网络(RNN)按顺序处理序列、难以并行计算以及卷积神经网络(CNN)在捕捉长距离依赖关系上的局限,另辟蹊径地采用多头注意力机制
- 计算机视觉|ConvNeXt:CNN 的复兴,Transformer 的新对手
紫雾凌寒
AI炼金厂#计算机视觉#深度学习机器学习计算机视觉人工智能transformerConvNeXt动态网络神经网络
一、引言在计算机视觉领域,卷积神经网络(ConvolutionalNeuralNetworks,简称CNN)长期以来一直是核心技术,自诞生以来,它在图像分类、目标检测、语义分割等诸多任务中都取得了令人瞩目的成果。然而,随着VisionTransformer(ViT)的出现,计算机视觉领域的格局发生了重大变化。ViT通过自注意力机制,打破了传统卷积神经网络的局部感知局限,能够捕捉长距离依赖关系,在图
- DynamicSparse-MobileNet (DSMNet) 用于低功耗图像分类
闲人编程
人工智能实战教程—论文创新点分类人工智能数据挖掘DSMNet动态稀疏熵感知自适应
目录DynamicSparse-MobileNet(DSMNet)用于低功耗图像分类一、模型背景与动机二、模型创新点详细解析1.动态稀疏计算路径2.自适应通道缩放3.熵感知知识蒸馏三、数据集与预处理四、网络结构详解1.输入层与熵估计模块2.动态稀疏卷积块3.熵感知分类头五、模型优化策略1.优化器设计——Prodigy优化器2.动态计算损失3.损失函数设计4.正则化技术5.防止过拟合六、网络结构图与
- 卷积神经网络(Convolutional Neural Network,CNN)详细解释(带示例)
浪九天
人工智能理论人工智能神经网络深度学习机器学习
目录卷积神经网络示例Python案例代码解释卷积神经网络概述:卷积神经网络是一种专门为处理具有网格结构数据(如图像、音频)而设计的深度学习模型。它通过卷积层、池化层和全连接层等组件,自动提取数据的特征,大大减少了模型的参数数量,降低计算量,同时提高了模型的泛化能力。主要组件卷积层:是CNN的核心组件,由多个卷积核组成。卷积核在数据上滑动,通过卷积操作提取数据的局部特征。卷积操作是将卷积核与数据的局
- matlab连接散射点,使用小波散射做信号分类
死月絲卡蕾特
matlab连接散射点
在时间序列信号的深度学习第二部分,我们将介绍一下怎样使用小波散射做信号分类。本视频将分为两部分。第一部分中我们已经简单介绍一下深度学习,包括它的概念和工作流程等。并且我们演示了如何用时频变换,和基于卷积神经网络的迁移学习来做心电图信号的分类。第二部分中我们将首先介绍什么是小波散射,之后将聚焦在怎样使用小波散射技术也就是不变散射卷积网络做自动特征提取,和使用长短期记忆网络也就是LSTM(LongSh
- 深度学习五大模型:CNN、Transformer、BERT、RNN、GAN解析
大模型_学习路线
深度学习cnntransformer人工智能AI大模型大模型LLM
今天探讨它们各自适用的场景,让您知道在何种情况下选择何种模型;同时分析它们的优势与局限,助您全面评估这些模型的性能。一、卷积神经网络(ConvolutionalNeuralNetwork,CNN)原理:CNN主要由卷积层、池化层和全连接层组成。卷积层通过卷积核在输入数据上进行卷积运算,提取局部特征;池化层则对特征图进行下采样,降低特征维度,同时保留主要特征;全连接层将特征图展开为一维向量,并进行分
- pytorch与深度学习随记——AlexNet
黑色的山岗在沉睡
深度学习随记深度学习pytorch人工智能
AlexNet和LeNet的设计理念非常相似,但也存在显著差异:基本结构对比网络深度:AlexNet比LeNet-5要深得多,AlexNet由八层组成:五个卷积层、两个全连接隐藏层和一个全连接输出层。激活函数:AlexNet使用ReLU而不是sigmoid作为其激活函数,这有助于缓解梯度消失问题并加速训练过程。AlexNet架构的创新点局部响应归一化(LRN):AlexNet引入LRN层,可以创建
- 卷积这个词在卷积神经网络中应该怎么理解
abments
人工智能cnn深度学习计算机视觉
卷积的定义数学概念:在数学上,卷积是一种操作,通常用于两个函数之间的运算。对于图像处理而言,这些函数通常是输入图像和一个称为“卷积核”或“滤波器”的小矩阵。在CNN中的应用:卷积操作是通过滑动窗口(卷积核)与输入数据进行点乘并求和来提取特征的。具体步骤定义卷积核:一个卷积核是一个小矩阵,通常为3x3、5x5等尺寸。卷积核中的每个值称为权重(weights),这些权重是通过训练过程优化得到的。滑动窗
- 卷积核在初始阶段的数据是怎么获取的
abments
人工智能深度学习人工智能
卷积核的初始化随机初始化:在大多数情况下,卷积核(滤波器)的权重在模型训练开始时是随机初始化的。常用的随机初始化方法包括以下几种:均匀分布初始化:权重从一个均匀分布中抽取值。importnumpyasnp#初始化3x3卷积核,权重范围[-0.1,0.1]kernel=np.random.uniform(-0.1,0.1,(3,3))正态分布初始化:权重从一个均值为0、标准差较小的正态分布中抽取。i
- 如何用 DeepSeek 进行卷积神经网络(CNN)的优化
一碗黄焖鸡三碗米饭
人工智能前沿与实践cnn人工智能神经网络机器学习深度学习
如何用DeepSeek进行卷积神经网络(CNN)的优化卷积神经网络(CNN)在计算机视觉任务中取得了巨大的成功,例如图像分类、目标检测和图像生成。然而,尽管CNN在这些任务中表现出色,它们通常需要大量的计算资源,并且在优化过程中可能会遇到一些挑战,如过拟合、训练速度慢、局部最优解等问题。为了更好地优化CNN模型,提高其性能和训练效率,DeepSeek提供了多种优化技术和工具,可以帮助我们系统地进行
- 图像识别-pytorch
星辰瑞云
机器学习cnnpytorch
Pytorch神经网络工具箱神经网络核心组件神经网络的基本组件层:包括卷积层、池化层、全连接层等。层是神经网络的基本结构,输入张量通过层后变为输出张量。模型:由层构成的网络结构,如AlexNet、VGG等。模型可以是预训练的,也可以自己搭建。损失函数:用于衡量预测值与真实值之间的差距,如均方误差。损失函数越小越好。优化器:用于调整权重和偏置,使损失函数最小化。优化器决定了参数的调整方式。误差反传(
- 基于 Pytorch 的全卷积网络人脸表情识别:从数据到部署的实战之旅
那年一路北
Pytorch理论+实践pytorch网络人工智能
前言:本文将详细介绍基于Pytorch框架,利用全卷积网络进行人脸表情识别的完整过程,涵盖从数据集的准备、模型的设计与训练,再到模型的部署与预测,通过代码实现以及详细讲解,帮助读者深入理解并掌握这一技术。一、引言人脸表情是人类情感交流的重要方式,不同的表情能够传达出丰富的情感信息。人脸表情识别在智能交互、安防监控、心理健康分析等众多领域有着广泛的应用前景。随着深度学习技术的发展,基于卷积神经网络的
- YOLOv5 + SE注意力机制:提升目标检测性能的实践
那年一路北
YoloYOLO目标跟踪人工智能
一、引言目标检测是计算机视觉领域的一个重要任务,广泛应用于自动驾驶、安防监控、工业检测等领域。YOLOv5作为YOLO系列的最新版本,以其高效性和准确性在实际应用中表现出色。然而,随着应用场景的复杂化,传统的卷积神经网络在处理复杂背景和多尺度目标时可能会遇到性能瓶颈。为此,引入注意力机制成为了一种有效的改进方法。本文将详细介绍如何在YOLOv5中引入SE(Squeeze-and-Excitatio
- 【模块】GNConv卷积模块
dearr__
扒网络模块深度学习pythonpytorch
论文《GCNet:Non-localNetworksMeetSqueeze-ExcitationNetworksandBeyond》1、作用GCNet(GlobalContextNetwork)结合了非局部网络(Non-LocalNetwork,NLNet)的长距离依赖捕捉能力和Squeeze-ExcitationNetwork(SENet)的轻量级特性,有效地建模全局上下文信息。通过简化非局部块
- Python深度学习实践:使用TensorFlow构建图像分类器
Evaporator Core
Python开发经验python深度学习tensorflow
摘要随着深度学习技术的飞速发展,图像识别已成为AI领域的热点应用之一。本篇文章将引导读者使用Python和Google的TensorFlow框架,从零开始构建一个简单的图像分类器。我们将深入探讨卷积神经网络(CNN)的基本原理,实现一个能够识别MNIST手写数字的数据集模型,并通过实战代码演示整个过程,最终展示模型的训练与评估。一、环境配置与库导入确保已安装Python3.7+版本,以及Tenso
- 金融风控与医疗影像算法创新前沿
智能计算研究中心
其他
内容概要在金融风控与医疗影像交叉领域,算法创新正推动两大行业的技术范式变革。联邦学习算法通过分布式数据协作机制,在保证隐私安全的前提下,显著提升金融风险预测模型的泛化能力。医疗影像诊断领域则依托三维卷积神经网络(3D-CNN)架构,实现了对CT、MRI等多模态影像的精准病灶分割,诊断准确率较传统方法提升23.6%。值得关注的是,可解释性算法(如LIME和SHAP)的深度应用,使两类场景中的模型决策
- pytorch阶段性总结2
Colinnian
pytorch人工智能python
nn神经网络functional当中卷积的使用importtorchimporttorch.nn.functionalasF#数据input=torch.tensor([[1,2,0,3,1],[0,1,2,3,1],[1,2,1,0,0],[5,2,3,1,1],[2,1,0,1,1]])#卷积核kernel=torch.tensor([[1,2,1],[0,1,0],[2,1,0]])#min
- 【模块】AKConv卷积模块
dearr__
扒网络模块深度学习人工智能
论文《AKConv:ConvolutionalKernelwithArbitrarySampledShapesandArbitraryNumberofParameters》1、作用AKConv旨在解决深度学习中标准卷积操作的两个固有限制:限定在局部窗口内,限制了从其他位置捕获信息的能力;卷积核固定大小,限制了对不同目标形状和大小的适应能力。这种新方法允许卷积核具有任意参数和采样形状,提供了一种灵活
- 关于旗正规则引擎下载页面需要弹窗保存到本地目录的问题
何必如此
jsp超链接文件下载窗口
生成下载页面是需要选择“录入提交页面”,生成之后默认的下载页面<a>标签超链接为:<a href="<%=root_stimage%>stimage/image.jsp?filename=<%=strfile234%>&attachname=<%=java.net.URLEncoder.encode(file234filesourc
- 【Spark九十八】Standalone Cluster Mode下的资源调度源代码分析
bit1129
cluster
在分析源代码之前,首先对Standalone Cluster Mode的资源调度有一个基本的认识:
首先,运行一个Application需要Driver进程和一组Executor进程。在Standalone Cluster Mode下,Driver和Executor都是在Master的监护下给Worker发消息创建(Driver进程和Executor进程都需要分配内存和CPU,这就需要Maste
- linux上独立安装部署spark
daizj
linux安装spark1.4部署
下面讲一下linux上安装spark,以 Standalone Mode 安装
1)首先安装JDK
下载JDK:jdk-7u79-linux-x64.tar.gz ,版本是1.7以上都行,解压 tar -zxvf jdk-7u79-linux-x64.tar.gz
然后配置 ~/.bashrc&nb
- Java 字节码之解析一
周凡杨
java字节码javap
一: Java 字节代码的组织形式
类文件 {
OxCAFEBABE ,小版本号,大版本号,常量池大小,常量池数组,访问控制标记,当前类信息,父类信息,实现的接口个数,实现的接口信息数组,域个数,域信息数组,方法个数,方法信息数组,属性个数,属性信息数组
}
&nbs
- java各种小工具代码
g21121
java
1.数组转换成List
import java.util.Arrays;
Arrays.asList(Object[] obj); 2.判断一个String型是否有值
import org.springframework.util.StringUtils;
if (StringUtils.hasText(str)) 3.判断一个List是否有值
import org.spring
- 加快FineReport报表设计的几个心得体会
老A不折腾
finereport
一、从远程服务器大批量取数进行表样设计时,最好按“列顺序”取一个“空的SQL语句”,这样可提高设计速度。否则每次设计时模板均要从远程读取数据,速度相当慢!!
二、找一个富文本编辑软件(如NOTEPAD+)编辑SQL语句,这样会很好地检查语法。有时候带参数较多检查语法复杂时,结合FineReport中生成的日志,再找一个第三方数据库访问软件(如PL/SQL)进行数据检索,可以很快定位语法错误。
- mysql linux启动与停止
墙头上一根草
如何启动/停止/重启MySQL一、启动方式1、使用 service 启动:service mysqld start2、使用 mysqld 脚本启动:/etc/inint.d/mysqld start3、使用 safe_mysqld 启动:safe_mysqld&二、停止1、使用 service 启动:service mysqld stop2、使用 mysqld 脚本启动:/etc/inin
- Spring中事务管理浅谈
aijuans
spring事务管理
Spring中事务管理浅谈
By Tony Jiang@2012-1-20 Spring中对事务的声明式管理
拿一个XML举例
[html]
view plain
copy
print
?
<?xml version="1.0" encoding="UTF-8"?>&nb
- php中隐形字符65279(utf-8的BOM头)问题
alxw4616
php中隐形字符65279(utf-8的BOM头)问题
今天遇到一个问题. php输出JSON 前端在解析时发生问题:parsererror.
调试:
1.仔细对比字符串发现字符串拼写正确.怀疑是 非打印字符的问题.
2.逐一将字符串还原为unicode编码. 发现在字符串头的位置出现了一个 65279的非打印字符.
 
- 调用对象是否需要传递对象(初学者一定要注意这个问题)
百合不是茶
对象的传递与调用技巧
类和对象的简单的复习,在做项目的过程中有时候不知道怎样来调用类创建的对象,简单的几个类可以看清楚,一般在项目中创建十几个类往往就不知道怎么来看
为了以后能够看清楚,现在来回顾一下类和对象的创建,对象的调用和传递(前面写过一篇)
类和对象的基础概念:
JAVA中万事万物都是类 类有字段(属性),方法,嵌套类和嵌套接
- JDK1.5 AtomicLong实例
bijian1013
javathreadjava多线程AtomicLong
JDK1.5 AtomicLong实例
类 AtomicLong
可以用原子方式更新的 long 值。有关原子变量属性的描述,请参阅 java.util.concurrent.atomic 包规范。AtomicLong 可用在应用程序中(如以原子方式增加的序列号),并且不能用于替换 Long。但是,此类确实扩展了 Number,允许那些处理基于数字类的工具和实用工具进行统一访问。
 
- 自定义的RPC的Java实现
bijian1013
javarpc
网上看到纯java实现的RPC,很不错。
RPC的全名Remote Process Call,即远程过程调用。使用RPC,可以像使用本地的程序一样使用远程服务器上的程序。下面是一个简单的RPC 调用实例,从中可以看到RPC如何
- 【RPC框架Hessian一】Hessian RPC Hello World
bit1129
Hello world
什么是Hessian
The Hessian binary web service protocol makes web services usable without requiring a large framework, and without learning yet another alphabet soup of protocols. Because it is a binary p
- 【Spark九十五】Spark Shell操作Spark SQL
bit1129
shell
在Spark Shell上,通过创建HiveContext可以直接进行Hive操作
1. 操作Hive中已存在的表
[hadoop@hadoop bin]$ ./spark-shell
Spark assembly has been built with Hive, including Datanucleus jars on classpath
Welcom
- F5 往header加入客户端的ip
ronin47
when HTTP_RESPONSE {if {[HTTP::is_redirect]}{ HTTP::header replace Location [string map {:port/ /} [HTTP::header value Location]]HTTP::header replace Lo
- java-61-在数组中,数字减去它右边(注意是右边)的数字得到一个数对之差. 求所有数对之差的最大值。例如在数组{2, 4, 1, 16, 7, 5,
bylijinnan
java
思路来自:
http://zhedahht.blog.163.com/blog/static/2541117420116135376632/
写了个java版的
public class GreatestLeftRightDiff {
/**
* Q61.在数组中,数字减去它右边(注意是右边)的数字得到一个数对之差。
* 求所有数对之差的最大值。例如在数组
- mongoDB 索引
开窍的石头
mongoDB索引
在这一节中我们讲讲在mongo中如何创建索引
得到当前查询的索引信息
db.user.find(_id:12).explain();
cursor: basicCoursor 指的是没有索引
&
- [硬件和系统]迎峰度夏
comsci
系统
从这几天的气温来看,今年夏天的高温天气可能会维持在一个比较长的时间内
所以,从现在开始准备渡过炎热的夏天。。。。
每间房屋要有一个落地电风扇,一个空调(空调的功率和房间的面积有密切的关系)
坐的,躺的地方要有凉垫,床上要有凉席
电脑的机箱
- 基于ThinkPHP开发的公司官网
cuiyadll
行业系统
后端基于ThinkPHP,前端基于jQuery和BootstrapCo.MZ 企业系统
轻量级企业网站管理系统
运行环境:PHP5.3+, MySQL5.0
系统预览
系统下载:http://www.tecmz.com
预览地址:http://co.tecmz.com
各种设备自适应
响应式的网站设计能够对用户产生友好度,并且对于
- Transaction and redelivery in JMS (JMS的事务和失败消息重发机制)
darrenzhu
jms事务承认MQacknowledge
JMS Message Delivery Reliability and Acknowledgement Patterns
http://wso2.com/library/articles/2013/01/jms-message-delivery-reliability-acknowledgement-patterns/
Transaction and redelivery in
- Centos添加硬盘完全教程
dcj3sjt126com
linuxcentoshardware
Linux的硬盘识别:
sda 表示第1块SCSI硬盘
hda 表示第1块IDE硬盘
scd0 表示第1个USB光驱
一般使用“fdisk -l”命
- yii2 restful web服务路由
dcj3sjt126com
PHPyii2
路由
随着资源和控制器类准备,您可以使用URL如 http://localhost/index.php?r=user/create访问资源,类似于你可以用正常的Web应用程序做法。
在实践中,你通常要用美观的URL并采取有优势的HTTP动词。 例如,请求POST /users意味着访问user/create动作。 这可以很容易地通过配置urlManager应用程序组件来完成 如下所示
- MongoDB查询(4)——游标和分页[八]
eksliang
mongodbMongoDB游标MongoDB深分页
转载请出自出处:http://eksliang.iteye.com/blog/2177567 一、游标
数据库使用游标返回find的执行结果。客户端对游标的实现通常能够对最终结果进行有效控制,从shell中定义一个游标非常简单,就是将查询结果分配给一个变量(用var声明的变量就是局部变量),便创建了一个游标,如下所示:
> var
- Activity的四种启动模式和onNewIntent()
gundumw100
android
Android中Activity启动模式详解
在Android中每个界面都是一个Activity,切换界面操作其实是多个不同Activity之间的实例化操作。在Android中Activity的启动模式决定了Activity的启动运行方式。
Android总Activity的启动模式分为四种:
Activity启动模式设置:
<acti
- 攻城狮送女友的CSS3生日蛋糕
ini
htmlWebhtml5csscss3
在线预览:http://keleyi.com/keleyi/phtml/html5/29.htm
代码如下:
<!DOCTYPE html>
<html>
<head>
<meta charset="UTF-8">
<title>攻城狮送女友的CSS3生日蛋糕-柯乐义<
- 读源码学Servlet(1)GenericServlet 源码分析
jzinfo
tomcatWebservlet网络应用网络协议
Servlet API的核心就是javax.servlet.Servlet接口,所有的Servlet 类(抽象的或者自己写的)都必须实现这个接口。在Servlet接口中定义了5个方法,其中有3个方法是由Servlet 容器在Servlet的生命周期的不同阶段来调用的特定方法。
先看javax.servlet.servlet接口源码:
package
- JAVA进阶:VO(DTO)与PO(DAO)之间的转换
snoopy7713
javaVOHibernatepo
PO即 Persistence Object VO即 Value Object
VO和PO的主要区别在于: VO是独立的Java Object。 PO是由Hibernate纳入其实体容器(Entity Map)的对象,它代表了与数据库中某条记录对应的Hibernate实体,PO的变化在事务提交时将反应到实际数据库中。
实际上,这个VO被用作Data Transfer
- mongodb group by date 聚合查询日期 统计每天数据(信息量)
qiaolevip
每天进步一点点学习永无止境mongodb纵观千象
/* 1 */
{
"_id" : ObjectId("557ac1e2153c43c320393d9d"),
"msgType" : "text",
"sendTime" : ISODate("2015-06-12T11:26:26.000Z")
- java之18天 常用的类(一)
Luob.
MathDateSystemRuntimeRundom
System类
import java.util.Properties;
/**
* System:
* out:标准输出,默认是控制台
* in:标准输入,默认是键盘
*
* 描述系统的一些信息
* 获取系统的属性信息:Properties getProperties();
*
*
*
*/
public class Sy
- maven
wuai
maven
1、安装maven:解压缩、添加M2_HOME、添加环境变量path
2、创建maven_home文件夹,创建项目mvn_ch01,在其下面建立src、pom.xml,在src下面简历main、test、main下面建立java文件夹
3、编写类,在java文件夹下面依照类的包逐层创建文件夹,将此类放入最后一级文件夹
4、进入mvn_ch01
4.1、mvn compile ,执行后会在