- 基于Paillier同态加密算法的金融数据安全共享机制研究【附数据】
金融数据分析与建模专家金融科研助手|论文指导|模型构建✨专业领域:金融数据处理与分析量化交易策略研究金融风险建模投资组合优化金融预测模型开发深度学习在金融中的应用擅长工具:Python/R/MATLAB量化分析机器学习模型构建金融时间序列分析蒙特卡洛模拟风险度量模型金融论文指导内容:金融数据挖掘与处理量化策略开发与回测投资组合构建与优化金融风险评估模型期刊论文✅具体问题可以私信或查看文章底部二维码
- 吴恩达 机器学习cs229-学习笔记-更新中
是娜个二叉树!
机器学习学习笔记
吴恩达机器学习cs22901基础概念语言:Matlab/python监督学习定义:获取一组数据集拟合数据从X到Y的映射回归问题:预测的Y是连续的,Y是实数分类问题:分类指的是Y取离散值,输出是离散的两组,正示例和负示例,把所有样本推到这条直线上,用0,1,标识逻辑回归算法,拟合直线区分正,负示例处理相对大量特征的回归算法或者分类算法支持向量机算法:它使用的不是1,2,3,10个输入特征,而是使用无
- YOLOv8实现手写数字识别系统:从MNIST到实时摄像头检测
在深度学习领域,手写数字识别是一个经典问题,也是入门计算机视觉的重要案例。本文将介绍一个基于YOLOv8和MNIST数据集的手写数字识别系统,该系统不仅能识别静态图像中的数字,还能通过摄像头实时检测手写数字。个人博客:YOLOv8实现手写数字识别系统:从MNIST到实时摄像头检测-iDing's博客项目概述这个项目结合了传统的MNIST数据集和现代的目标检测算法YOLOv8,实现了以下功能:将MN
- Python打卡Day11 常见的调参方式
核心知识:1.模型=算法+实例化设置的外参(超参数)+训练得到的内参2.只要调参就需要考2次所以如果不做交叉验证,就需要划分验证集和测试集,但是很多调参方法中都默认有交叉验证,所以实际中可以省去划分验证集和测试集的步骤基线模型(基准模型):首先运行一个使用默认参数的模型,记录其性能作为比较的基准。超参数调整数据1.网格搜索(GridSearchCV):-需要定义参数的网格(param_grid),
- python学智能算法(二十七)|SVM-拉格朗日函数求解上
西猫雷婶
机器学习人工智能python学习笔记支持向量机python机器学习算法人工智能
【1】引言前序学习进程中,我们已经掌握了支持向量机算法中,为寻找最佳分割超平面,如何用向量表达超平面方程,如何为超平面方程建立拉格朗日函数。本篇文章的学习目标是:求解SVM拉格朗日函数。【2】求解方法【2.1】待求解函数支持量机算法的拉格朗日函数为:L(w,b,α)=12∥w∥2−∑i=1mαi[yi(w⋅xi+b−1)]L(w,b,\alpha)=\frac{1}{2}{\left\|w\rig
- 2022-11-13 c习题10-4 递归求简单交错幂级数的部分和
远山熊一
#includedoublefn(doublex,intn);intmain(){doublex;intn;scanf("%lf%d",&x,&n);printf("%.2f\n",fn(x,n));return0;}doublecalc_pow(doublea,intb);//自定义一个pow函数求指数幂doublecalc_pow(doublea,intb)//定义pow利用了递归函数{if(
- 【算法-贪心算法-python】柠檬水找零
檀越@新空间
P1算法与数据结构s1Python算法贪心算法python
欢迎来到我的博客,很高兴能够在这里和您见面!希望您在这里可以感受到一份轻松愉快的氛围,不仅可以获得有趣的内容和知识,也可以畅所欲言、分享您的想法和见解。推荐:kuan的首页,持续学习,不断总结,共同进步,活到老学到老导航檀越剑指大厂系列:全面总结java核心技术点,如集合,jvm,并发编程redis,kafka,Spring,微服务,Netty等常用开发工具系列:罗列常用的开发工具,如IDEA,M
- 【算法】贪心算法——柠檬水找零
题解:柠檬水找零(贪心算法)目录1.题目2.题解3.参考代码4.证明5.总结1.题目题目链接:LINK2.题解分情况讨论+贪心算法当顾客为5元时,收下当顾客为10元时,收下10元并找回5元当顾客为20元时,收下20元并找回10+5元或者5+5+5元这里仅20元时候找钱会有分歧,所以这里我们用贪心算法,即优先留下尽可能多的5元,尽快把10元扔出去。原因:5元是“万金油”,既可以给10元找零,也可以给
- Jetson平台编译Tengine
space01
AIoTJetson人工智能深度学习计算机视觉
1.Tengine简介Tengine于2017年在GitHub(https://github.com/OAID/Tengine)开源,是OPENAILAB(开放智能)推出的自主知识产权的边缘AI计算框架,致力于解决AIoT产业链碎片化问题,加速AI产业化落地。Tengine兼容多种操作系统和深度学习算法框架,简化和加速面向场景的AI算法在嵌入式边缘设备上快速迁移,以及实际应用部署落地,可以十倍提升
- 函数对象
tal0n
函数对象是STL库提供的除了迭代器,迭代器配接器以外的另外一种概念。简单来说:函数对象提供了一种方法,将要调用的函数与准备传递给这个函数的隐藏参数捆绑在一起。即:该对象实现了operator()的同时还提供了部分执行时的上下文环境。下面我们通过例子来详细看下函数对象。例子STL中有一个find_if的算法实现,他的参数包括:一组表示范围的迭代器,一个用于生成bool类型值的判断式。例如我们需要在一
- 飞算JavaAI:力臻开发之本真,破 AI 代码之繁琐,传统项目一键生成
微学AI
人工智能javajavaAI
飞算JavaAI:力臻开发之本真,破AI代码之繁琐,传统项目一键生成文章目录飞算JavaAI:力臻开发之本真,破AI代码之繁琐,传统项目一键生成一、前言二、飞算JavaAI是什么?2.1背景与实力2.2飞算JavaAI的“独门绝技”三、飞算JavaAI实战体验3.1IDEA插件安装配置3.2Main中写一个简单的梯度下降算法3.3main函数搭建一个卷积神经网络网络3.4飞算JavaAI:需求分析
- 短剧小程序的「技术革命」:从「粗放生长」到「精准运营」
weixin_lynhgworld
小程序
随着短剧行业进入「存量竞争」阶段,技术能力正成为小程序的核心竞争力。从内容推荐到用户留存,从广告变现到IP开发,每一环节都需要数据驱动和算法优化。一、智能推荐:让「用户找到剧」变成「剧找到用户」传统短剧平台依赖标签匹配,而小程序通过多维度数据实现精准推荐:「情绪图谱」分析:记录用户观看时的快进、暂停、重复播放等行为,构建情绪波动曲线;「场景化推荐」:根据时间(如深夜)、地点(如地铁)、设备(如手机
- 深入理解Mysql索引底层数据结构与算法
桑翔
一.索引的本质索引是帮助MySQL高效获取数据的排好序的数据结构二.索引数据结构1.二叉树2.红黑树3.Hash表4.B-Tree1.叶节点具有相同的深度,叶节点的指针为空2.所有索引元素不重复3.节点中的数据索引从左到右递增排序B-Tree5.B+Tree1.非叶子节点不存储data,可以放更多的索引2.叶子节点包含所有索引字段3.叶子节点用指针连接,提高区间访问的性能(体现在做范围查询的时候)
- Python深度学习实践:LSTM与GRU在序列数据预测中的应用
AI智能应用
Python入门实战计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
Python深度学习实践:LSTM与GRU在序列数据预测中的应用作者:禅与计算机程序设计艺术/ZenandtheArtofComputerProgramming1.背景介绍1.1问题的由来序列数据预测是机器学习领域的一个重要研究方向,涉及时间序列分析、自然语言处理、语音识别等多个领域。序列数据具有时间依赖性,即序列中每个元素都受到前面元素的影响。传统的机器学习算法难以捕捉这种时间依赖性,而深度学习
- c语言学习_函数递归
无限远的弧光灯
学习c语言学习开发语言c语言
今天学习函数递归。函数递归通俗来说就是函数自己调用自己,递归的主要思考方式在于:把大事化小。例子:接受一个整型值,按照顺序打印它的每一位。voidprint(unsignedintn){if(n>9){print(n/10);}printf("%d",n%10);}intmain(){unsignedintnum=0;scanf("%u",&num);print(num);return0;}
- 使用 Python 爬取网易云音乐歌单数据(完整教程)
Python爬虫项目
python开发语言githubselenium爬虫
一、引言随着在线音乐平台的普及,网易云音乐(NetEaseCloudMusic)凭借其个性化的推荐算法和丰富的用户互动,吸引了大量用户。网易云音乐的歌单中包含了丰富的音乐数据,包括歌曲名、歌手、专辑、播放量、评论数等信息。通过爬取这些数据,可以对音乐流行趋势进行分析,挖掘音乐推荐策略,甚至训练个性化推荐模型。本教程将使用Python构建一个爬虫,解析网易云音乐的歌单接口,获取歌曲数据并进行数据分析
- c#集合排序
zls365365
c#windows开发语言
在C#中,集合排序是一种常见的操作,它可以帮助我们对集合中的元素进行排序。C#中提供了多种集合排序方法,包括Array.Sort、List.Sort、SortedList和SortedSet等。下面分别介绍一下这些集合排序方法的用法和注意事项:1.Array.SortArray.Sort是C#中的数组排序方法,可以对数组中的元素进行排序。Array.Sort方法可以使用默认的排序算法或者自定义的排
- C# 代码(`Hashtable` 和 `SortedList`)
张謹礧
c#哈希算法开发语言
一、Hashtable(哈希表)1.基本概念非泛型集合:存储键值对(object类型),通过哈希算法实现快速查找。线程安全:默认非线程安全,可通过Hashtable.Synchronized创建线程安全版本。键的唯一性:键必须唯一,且不可为null(值可为null)。2.创建与初始化//创建空的HashtableHashtablehashtable=newHashtable();//创建并初始化
- 人脸检测算法——SCRFD
海绵波波107
#计算机视觉算法计算机视觉
SCRFD算法核心解析1.算法定义与背景SCRFD(SampleandComputationRedistributionforEfficientFaceDetection)由JiaGuo等人于2021年在arXiv提出,是一种高效、高精度的人脸检测算法,其核心创新在于:双重重分配策略:样本重分配(SR):动态增强关键训练阶段的样本数据。计算重分配(CR):通过神经架构搜索(NAS)优化骨干网络(B
- 力扣经典算法篇-28-无重复字符的最长子串(左右指针 + Hash统计)
weisian151
算法-力扣经典篇算法leetcode哈希算法
1、题干给定一个字符串s,请你找出其中不含有重复字符的最长子串的长度。示例1:输入:s=“abcabcbb”输出:3解释:因为无重复字符的最长子串是“abc”,所以其长度为3。示例2:输入:s=“bbbbb”输出:1解释:因为无重复字符的最长子串是“b”,所以其长度为1。示例3:输入:s=“pwwkew”输出:3解释:因为无重复字符的最长子串是“wke”,所以其长度为3。请注意,你的答案必须是子串
- 73. 矩阵置零
youzhihua
题目描述给定一个mxn的矩阵,如果一个元素为0,则将其所在行和列的所有元素都设为0。请使用原地算法。示例:输入:[[1,1,1],[1,0,1],[1,1,1]]输出:[[1,0,1],[0,0,0],[1,0,1]]暴力求解思路1.遍历数组中的每个元素,若这个元素等于0,则分别使用两个Set记录下这个元素的横坐标和纵坐标。2.遍历两个Set,将其中的行和列的值都置成0。3.由于题目要求的是原地法
- lanqiaoOJ 2145:求阶乘 ← 二分法
hnjzsyjyj
信息学竞赛#分治算法与双指针算法二分法
【题目来源】https://www.lanqiao.cn/problems/2145/learning/【题目描述】满足N!的末尾恰好有K个0的最小的N是多少?如果这样的N不存在输出-1。【输入格式】一个整数K。【输出格式】一个整数代表答案。【输入样例】2【输出样例】10【评测用例规模与约定】对于30%的数据,1≤K≤10^6.对于100%的数据,1≤K≤10^18.【算法分析】●二分法的应用条件
- 0315_算法22级1班实验2(递归分治策略)
目录ProblemA众数问题题目描述输入输出样例输入样例输出思路分析代码实现思路优化ProblemB半数集问题题目描述输入输出样例输入样例输出思路分析代码实现ProblemC查找数组拐点题目描述输入输出样例输入样例输出思路分析代码实现思路优化ProblemA众数问题题目描述所谓众数,就是对于给定的含有N个元素的多重集合,每个元素在S中出现次数最多的成为该元素的重数,多重集合S重的重数最大的元素成为
- 0301_算法22级1班实验1
目录ProblemA统计数字问题1.题目描述2.思路分析3.代码实现ProblemB字典序问题1.题目描述2.思路分析3.代码实现ProblemC最多约数问题1.题目描述2.思路分析3.代码实现ProblemA统计数字问题1.题目描述题目描述问题描述:一本书的页码从自然数1开始顺序编码直到自然数n。书的页码按照通常的习惯编排,每个页码都不含多余的前导数字0。例如,第6页用数字6表示,而不是06或0
- OpenCV中常用特征提取算法(SURF、ORB、SIFT和AKAZE)用法示例(C++和Python)
点云SLAM
图形图像处理opencv算法ORB算法SIFT算法SURF算法AKAZE算法计算机视觉
OpenCV中提供了多种常用的特征提取算法,广泛应用于图像匹配、拼接、SLAM、物体识别等任务。以下是OpenCV中几个主流特征提取算法的用法总结与代码示例,涵盖C++和Python两个版本。常用特征提取算法列表算法特点是否需额外模块SIFT(尺度不变特征)稳定性强、可旋转缩放xfeatures2d模块SURF(加速稳健特征)快速但专利保护xfeatures2d模块ORB(OrientedFAST
- 【AI 赋能:Python 人工智能应用实战】5. 梯度下降家族:SGD/Adam优化器对比实验与选择策略
AI_DL_CODE
人工智能python梯度下降优化器SGDAdamPyTorch
摘要:本文系统解析梯度下降优化器的核心原理与演进脉络,构建从理论到实战的完整知识体系。理论部分梳理优化器发展里程碑,从1951年的SGD到2018年的AdamW,揭示技术迭代逻辑;通过数学公式对比SGD、Momentum、Adam等核心算法的更新机制,解析动量加速、自适应学习率的创新点。结合损失曲面分析,阐释Momentum如何逃离鞍点、Adam如何处理悬崖梯度。实战模块基于PyTorch在MNI
- 脱岗离岗逃岗监测识别软件系统平台 标检测算法#YOLO
值班脱岗智能监测识别系统是一种利用AI视频智能分析技术的智能化系统,能够对办公工作岗位区域、岗亭、值班室、生产线岗位等进行7*24小时不间断实时监测。该系统的出现,有助于提高工作效率,确保工作秩序的正常运行,同时也能有效避免值班人员脱岗、懈怠等现象的发生。该系统的工作原理是通过高清摄像头捕捉实时画面,然后利用AI视频智能分析技术对画面进行实时分析,识别出是否有人脱岗、懈怠或者有其他异常情况发生。当
- 颠覆未来:创新代码引领人工智能与量子计算深度融合
金枝玉叶9
程序员知识储备1程序员知识储备2程序员知识储备3人工智能量子计算
摘要在信息时代飞速演进的背景下,人工智能与量子计算正以前所未有的速度互相融合,推动着科技边界的不断拓展。本文回顾了经典算法的智慧,展示了前沿深度学习模型的构建,并通过量子电路设计探讨了创新代码的可能性,为探索未来科技变革提供了全新视角。1.引言当前,科技创新正处于高速迭代的关键阶段,传统计算方法与新型技术的交汇处正成为研究热点。人工智能的发展已渗透到各行各业,而量子计算的崛起则为解决复杂计算问题提
- 智界R7智驾功能和性能评价
TheWanderers
智能驾驶智界
一、智驾行车能力标题硬件配置与系统架构感知硬件:Max/Ultra版搭载1个192线激光雷达、3个毫米波雷达(含1个4D成像雷达)、12个超声波雷达、11个高清摄像头(含前向800万像素双目+鱼眼镜头)。Pro版未配备激光雷达,但保留3个毫米波雷达和10个摄像头。核心算法:HUAWEIADS3.0系统,基于端到端架构,整合感知、决策与控制模块,支持全场景目标识别(如非标准障碍物、夜间行人)。算力支
- 人工智能视频分析系统人员离岗报警设计方案
liuhu21
人工智能云计算运维
一、方案概述近几年安防监控技术不断的进步,特别是在人工智能推出之后。安防监控系统结合人工智能算法做到了许多以前无法做到的事情。就比如我们今天要说的离岗检测报警监控系统。以前我们只能通过人工值守监控室的方式,通过人的判断去观看现场人员在岗情况。如今有了离岗检测监控系统,系统可以自动监测现场人员是否在岗、离岗时间以及离岗人数等等。这样,大大减少了监控室值班人员的工作量,同时相较人工监管提升了工作效率。
- Java常用排序算法/程序员必须掌握的8大排序算法
cugfy
java
分类:
1)插入排序(直接插入排序、希尔排序)
2)交换排序(冒泡排序、快速排序)
3)选择排序(直接选择排序、堆排序)
4)归并排序
5)分配排序(基数排序)
所需辅助空间最多:归并排序
所需辅助空间最少:堆排序
平均速度最快:快速排序
不稳定:快速排序,希尔排序,堆排序。
先来看看8种排序之间的关系:
1.直接插入排序
(1
- 【Spark102】Spark存储模块BlockManager剖析
bit1129
manager
Spark围绕着BlockManager构建了存储模块,包括RDD,Shuffle,Broadcast的存储都使用了BlockManager。而BlockManager在实现上是一个针对每个应用的Master/Executor结构,即Driver上BlockManager充当了Master角色,而各个Slave上(具体到应用范围,就是Executor)的BlockManager充当了Slave角色
- linux 查看端口被占用情况详解
daizj
linux端口占用netstatlsof
经常在启动一个程序会碰到端口被占用,这里讲一下怎么查看端口是否被占用,及哪个程序占用,怎么Kill掉已占用端口的程序
1、lsof -i:port
port为端口号
[root@slave /data/spark-1.4.0-bin-cdh4]# lsof -i:8080
COMMAND PID USER FD TY
- Hosts文件使用
周凡杨
hostslocahost
一切都要从localhost说起,经常在tomcat容器起动后,访问页面时输入http://localhost:8088/index.jsp,大家都知道localhost代表本机地址,如果本机IP是10.10.134.21,那就相当于http://10.10.134.21:8088/index.jsp,有时候也会看到http: 127.0.0.1:
- java excel工具
g21121
Java excel
直接上代码,一看就懂,利用的是jxl:
import java.io.File;
import java.io.IOException;
import jxl.Cell;
import jxl.Sheet;
import jxl.Workbook;
import jxl.read.biff.BiffException;
import jxl.write.Label;
import
- web报表工具finereport常用函数的用法总结(数组函数)
老A不折腾
finereportweb报表函数总结
ADD2ARRAY
ADDARRAY(array,insertArray, start):在数组第start个位置插入insertArray中的所有元素,再返回该数组。
示例:
ADDARRAY([3,4, 1, 5, 7], [23, 43, 22], 3)返回[3, 4, 23, 43, 22, 1, 5, 7].
ADDARRAY([3,4, 1, 5, 7], "测试&q
- 游戏服务器网络带宽负载计算
墙头上一根草
服务器
家庭所安装的4M,8M宽带。其中M是指,Mbits/S
其中要提前说明的是:
8bits = 1Byte
即8位等于1字节。我们硬盘大小50G。意思是50*1024M字节,约为 50000多字节。但是网宽是以“位”为单位的,所以,8Mbits就是1M字节。是容积体积的单位。
8Mbits/s后面的S是秒。8Mbits/s意思是 每秒8M位,即每秒1M字节。
我是在计算我们网络流量时想到的
- 我的spring学习笔记2-IoC(反向控制 依赖注入)
aijuans
Spring 3 系列
IoC(反向控制 依赖注入)这是Spring提出来了,这也是Spring一大特色。这里我不用多说,我们看Spring教程就可以了解。当然我们不用Spring也可以用IoC,下面我将介绍不用Spring的IoC。
IoC不是框架,她是java的技术,如今大多数轻量级的容器都会用到IoC技术。这里我就用一个例子来说明:
如:程序中有 Mysql.calss 、Oracle.class 、SqlSe
- 高性能mysql 之 选择存储引擎(一)
annan211
mysqlInnoDBMySQL引擎存储引擎
1 没有特殊情况,应尽可能使用InnoDB存储引擎。 原因:InnoDB 和 MYIsAM 是mysql 最常用、使用最普遍的存储引擎。其中InnoDB是最重要、最广泛的存储引擎。她 被设计用来处理大量的短期事务。短期事务大部分情况下是正常提交的,很少有回滚的情况。InnoDB的性能和自动崩溃 恢复特性使得她在非事务型存储的需求中也非常流行,除非有非常
- UDP网络编程
百合不是茶
UDP编程局域网组播
UDP是基于无连接的,不可靠的传输 与TCP/IP相反
UDP实现私聊,发送方式客户端,接受方式服务器
package netUDP_sc;
import java.net.DatagramPacket;
import java.net.DatagramSocket;
import java.net.Ine
- JQuery对象的val()方法执行结果分析
bijian1013
JavaScriptjsjquery
JavaScript中,如果id对应的标签不存在(同理JAVA中,如果对象不存在),则调用它的方法会报错或抛异常。在实际开发中,发现JQuery在id对应的标签不存在时,调其val()方法不会报错,结果是undefined。
- http请求测试实例(采用json-lib解析)
bijian1013
jsonhttp
由于fastjson只支持JDK1.5版本,因些对于JDK1.4的项目,可以采用json-lib来解析JSON数据。如下是http请求的另外一种写法,仅供参考。
package com;
import java.util.HashMap;
import java.util.Map;
import
- 【RPC框架Hessian四】Hessian与Spring集成
bit1129
hessian
在【RPC框架Hessian二】Hessian 对象序列化和反序列化一文中介绍了基于Hessian的RPC服务的实现步骤,在那里使用Hessian提供的API完成基于Hessian的RPC服务开发和客户端调用,本文使用Spring对Hessian的集成来实现Hessian的RPC调用。
定义模型、接口和服务器端代码
|---Model
&nb
- 【Mahout三】基于Mahout CBayes算法的20newsgroup流程分析
bit1129
Mahout
1.Mahout环境搭建
1.下载Mahout
http://mirror.bit.edu.cn/apache/mahout/0.10.0/mahout-distribution-0.10.0.tar.gz
2.解压Mahout
3. 配置环境变量
vim /etc/profile
export HADOOP_HOME=/home
- nginx负载tomcat遇非80时的转发问题
ronin47
nginx负载后端容器是tomcat(其它容器如WAS,JBOSS暂没发现这个问题)非80端口,遇到跳转异常问题。解决的思路是:$host:port
详细如下:
该问题是最先发现的,由于之前对nginx不是特别的熟悉所以该问题是个入门级别的:
? 1 2 3 4 5
- java-17-在一个字符串中找到第一个只出现一次的字符
bylijinnan
java
public class FirstShowOnlyOnceElement {
/**Q17.在一个字符串中找到第一个只出现一次的字符。如输入abaccdeff,则输出b
* 1.int[] count:count[i]表示i对应字符出现的次数
* 2.将26个英文字母映射:a-z <--> 0-25
* 3.假设全部字母都是小写
*/
pu
- mongoDB 复制集
开窍的石头
mongodb
mongo的复制集就像mysql的主从数据库,当你往其中的主复制集(primary)写数据的时候,副复制集(secondary)会自动同步主复制集(Primary)的数据,当主复制集挂掉以后其中的一个副复制集会自动成为主复制集。提供服务器的可用性。和防止当机问题
mo
- [宇宙与天文]宇宙时代的经济学
comsci
经济
宇宙尺度的交通工具一般都体型巨大,造价高昂。。。。。
在宇宙中进行航行,近程采用反作用力类型的发动机,需要消耗少量矿石燃料,中远程航行要采用量子或者聚变反应堆发动机,进行超空间跳跃,要消耗大量高纯度水晶体能源
以目前地球上国家的经济发展水平来讲,
- Git忽略文件
Cwind
git
有很多文件不必使用git管理。例如Eclipse或其他IDE生成的项目文件,编译生成的各种目标或临时文件等。使用git status时,会在Untracked files里面看到这些文件列表,在一次需要添加的文件比较多时(使用git add . / git add -u),会把这些所有的未跟踪文件添加进索引。
==== ==== ==== 一些牢骚
- MySQL连接数据库的必须配置
dashuaifu
mysql连接数据库配置
MySQL连接数据库的必须配置
1.driverClass:com.mysql.jdbc.Driver
2.jdbcUrl:jdbc:mysql://localhost:3306/dbname
3.user:username
4.password:password
其中1是驱动名;2是url,这里的‘dbna
- 一生要养成的60个习惯
dcj3sjt126com
习惯
一生要养成的60个习惯
第1篇 让你更受大家欢迎的习惯
1 守时,不准时赴约,让别人等,会失去很多机会。
如何做到:
①该起床时就起床,
②养成任何事情都提前15分钟的习惯。
③带本可以随时阅读的书,如果早了就拿出来读读。
④有条理,生活没条理最容易耽误时间。
⑤提前计划:将重要和不重要的事情岔开。
⑥今天就准备好明天要穿的衣服。
⑦按时睡觉,这会让按时起床更容易。
2 注重
- [介绍]Yii 是什么
dcj3sjt126com
PHPyii2
Yii 是一个高性能,基于组件的 PHP 框架,用于快速开发现代 Web 应用程序。名字 Yii (读作 易)在中文里有“极致简单与不断演变”两重含义,也可看作 Yes It Is! 的缩写。
Yii 最适合做什么?
Yii 是一个通用的 Web 编程框架,即可以用于开发各种用 PHP 构建的 Web 应用。因为基于组件的框架结构和设计精巧的缓存支持,它特别适合开发大型应
- Linux SSH常用总结
eksliang
linux sshSSHD
转载请出自出处:http://eksliang.iteye.com/blog/2186931 一、连接到远程主机
格式:
ssh name@remoteserver
例如:
ssh
[email protected]
二、连接到远程主机指定的端口
格式:
ssh name@remoteserver -p 22
例如:
ssh i
- 快速上传头像到服务端工具类FaceUtil
gundumw100
android
快速迭代用
import java.io.DataOutputStream;
import java.io.File;
import java.io.FileInputStream;
import java.io.FileNotFoundException;
import java.io.FileOutputStream;
import java.io.IOExceptio
- jQuery入门之怎么使用
ini
JavaScripthtmljqueryWebcss
jQuery的强大我何问起(个人主页:hovertree.com)就不用多说了,那么怎么使用jQuery呢?
首先,下载jquery。下载地址:http://hovertree.com/hvtart/bjae/b8627323101a4994.htm,一个是压缩版本,一个是未压缩版本,如果在开发测试阶段,可以使用未压缩版本,实际应用一般使用压缩版本(min)。然后就在页面上引用。
- 带filter的hbase查询优化
kane_xie
查询优化hbaseRandomRowFilter
问题描述
hbase scan数据缓慢,server端出现LeaseException。hbase写入缓慢。
问题原因
直接原因是: hbase client端每次和regionserver交互的时候,都会在服务器端生成一个Lease,Lease的有效期由参数hbase.regionserver.lease.period确定。如果hbase scan需
- java设计模式-单例模式
men4661273
java单例枚举反射IOC
单例模式1,饿汉模式
//饿汉式单例类.在类初始化时,已经自行实例化
public class Singleton1 {
//私有的默认构造函数
private Singleton1() {}
//已经自行实例化
private static final Singleton1 singl
- mongodb 查询某一天所有信息的3种方法,根据日期查询
qiaolevip
每天进步一点点学习永无止境mongodb纵观千象
// mongodb的查询真让人难以琢磨,就查询单天信息,都需要花费一番功夫才行。
// 第一种方式:
coll.aggregate([
{$project:{sendDate: {$substr: ['$sendTime', 0, 10]}, sendTime: 1, content:1}},
{$match:{sendDate: '2015-
- 二维数组转换成JSON
tangqi609567707
java二维数组json
原文出处:http://blog.csdn.net/springsen/article/details/7833596
public class Demo {
public static void main(String[] args) { String[][] blogL
- erlang supervisor
wudixiaotie
erlang
定义supervisor时,如果是监控celuesimple_one_for_one则删除children的时候就用supervisor:terminate_child (SupModuleName, ChildPid),如果shutdown策略选择的是brutal_kill,那么supervisor会调用exit(ChildPid, kill),这样的话如果Child的behavior是gen_