DWD(Data Warehouse Detail):数据明细层,结构和粒度与原始表保持一致,对ODS层数据进行清洗(取出空值、脏数据、超过极限范围的数据)。
DWD层的数据来源于ODS原始数据层,在原始数据层的Hive表里,只有一个字段,存储了原始的一条条日志信息,下面以事件(如商品点击事件,展示详情事件)日志来说明,原始日志如下:
1593095829089|{ "cm":{ "ln":"-89.3", "sv":"V2.6.6", "os":"8.0.3", "g":"[email protected]", "mid":"1", "nw":"3G", "l":"en", "vc":"3", "hw":"640*1136", "ar":"MX", "uid":"1", "t":"1593002588300", "la":"-16.2", "md":"sumsung-3", "vn":"1.2.2", "ba":"Sumsung", "sr":"D" }, "ap":"app", "et":[ { "ett":"1593077273840", "en":"display", "kv":{ "goodsid":"0", "action":"2", "extend1":"2", "place":"1", "category":"93" } }, { "ett":"1593052169678", "en":"loading", "kv":{ "extend2":"", "loading_time":"54", "action":"1", "extend1":"", "type":"1", "type1":"102", "loading_way":"1" } }, { "ett":"1593013890514", "en":"notification", "kv":{ "ap_time":"1593003516686", "action":"4", "type":"2", "content":"" } }, { "ett":"1592999171192", "en":"error", "kv":{ "errorDetail":"java.lang.NullPointerException\\n at cn.lift.appIn.web.AbstractBaseController.validInbound(AbstractBaseController.java:72)\\n at cn.lift.dfdf.web.AbstractBaseController.validInbound", "errorBrief":"at cn.lift.appIn.control.CommandUtil.getInfo(CommandUtil.java:67)" } }, { "ett":"1593002958311", "en":"comment", "kv":{ "p_comment_id":1, "addtime":"1593079427374", "praise_count":188, "other_id":0, "comment_id":9, "reply_count":193, "userid":3, "content":"涂士震嫩庙胞洪邮骗具捶赣锗塌舅捕沥爷" } }, { "ett":"1593052803303", "en":"favorites", "kv":{ "course_id":4, "id":0, "add_time":"1593044515996", "userid":7 } }, { "ett":"1593095771819", "en":"praise", "kv":{ "target_id":8, "id":5, "type":4, "add_time":"1593000096852", "userid":8 } }] }
数据格式为服务器时间|事件json,json中又包括公共字段cm,数据来源ap,以及事件数组et。由于事件是一段时间提交一次,是一个包含了多个不同类型事件的json数组,用en字段区分不同的事件,如display表示商品点击事件。因此在这里的处理需要经过两步,首先将ODS表中的长传json解析成一个个字段的DWD层的基础明细表,并且利用UDTF函数,将事件数组中的每个事件炸裂开,这些数据全部放在基础明细表里。然后针对不同的事件,将某一类事件过滤出来,并且取出事件中的kv值,放在特定的某一事件的DWD明细表中。
一 基础事件明细表
基础事件明细表包含了所有类型的事件数据,需要定义一个UDF函数,用来拆分长串的日志,将其处理成一个规则的格式,即以\t分隔的字符串,后续可以通过hive自带的split函数转化成数组,利用下标取值。
public class BaseFieldUDF extends UDF { public String evaluate(String line,String keysStr){ String[] keysArr = keysStr.split(","); //原始时间日志格式:时间|json日志 String[] logContent = line.split("\\|"); if (logContent.length != 2 || StringUtils.isBlank(logContent[1])){ return ""; } StringBuffer sb = new StringBuffer(); try { //拼接公共字段 JSONObject jsonObject = new JSONObject(logContent[1]); JSONObject cm = jsonObject.getJSONObject("cm"); for (int i = 0; i < keysArr.length; i++) { String key = keysArr[i].trim(); if (cm.has(key)){ sb.append(cm.getString(key)).append("\t"); } } //拼接事件字段 sb.append(jsonObject.getString("et")).append("\t"); //拼接服务器时间 sb.append(logContent[0]).append("\t"); } catch (JSONException e) { e.printStackTrace(); } return sb.toString(); } }
然后定义一个UDTF函数,用来对事件数组进行炸裂。传入的是1行1列的事件数组,返回的是2列多行的数据,第1列是事件名,稍后利用这个事件名过滤出不同的事件明细表,第2列是事件的详情kv信息。
public class EventJsonUDTF extends GenericUDTF { @Override public StructObjectInspector initialize(ObjectInspector[] argOIs) throws UDFArgumentException { ListfieldNames = new ArrayList<>(); List fieldTypes = new ArrayList<>(); fieldNames.add("event_name"); fieldTypes.add(PrimitiveObjectInspectorFactory.javaStringObjectInspector); fieldNames.add("event_json"); fieldTypes.add(PrimitiveObjectInspectorFactory.javaStringObjectInspector); return ObjectInspectorFactory.getStandardStructObjectInspector(fieldNames,fieldTypes); } @Override public void process(Object[] objects) throws HiveException { //获取输入数据 String input = objects[0].toString(); if (StringUtils.isBlank(input)){ return; }else { try { JSONArray ja = new JSONArray(input); String[] result = new String[2]; for (int i = 0; i < ja.length(); i++) { try { result[0] = ja.getJSONObject(i).getString("en"); result[1] = ja.getString(i); } catch (JSONException e) { //防止因为某个数据的错误结束整个循环 continue; } } //进来一行数据,返回2列多行数据 forward(result); } catch (JSONException e) { e.printStackTrace(); } } } @Override public void close() throws HiveException { } }
接下来就是创建存储事件基础明细需要的表。event_name和event_json字段就是利用UDTF函数得到的结果。
drop table if exists dwd_base_event_log; CREATE EXTERNAL TABLE dwd_base_event_log( `mid_id` string, `user_id` string, `version_code` string, `version_name` string, `lang` string, `source` string, `os` string, `area` string, `model` string, `brand` string, `sdk_version` string, `gmail` string, `height_width` string, `app_time` string, `network` string, `lng` string, `lat` string, `event_name` string, `event_json` string, `server_time` string) PARTITIONED BY (`dt` string) stored as parquet location '/warehouse/gmall/dwd/dwd_base_event_log/';
然后利用脚本将数据导入到基础明细表。
①需要在执行的sql中添加自定的UDF函数base_analizer,和UDTF函数flat_analizer。
②where条件中加了 base_analizer(line,'mid,uid,vc,vn,l,sr,os,ar,md,ba,sv,g,hw,t,nw,ln,la')<>'',是因为在我们自定义的UDF函数中如果数据错误,会返回"",所以在这里将其过滤掉。
③因为分区字段赋值了do_date,非严格模式似乎并没有必要。
④UDTF函数返回2列的写法 lateral view flat_analizer(ops) tmp_k as event_name, event_json
⑤因为我们建的是分区表,因此insert overwrite只会覆盖当前分区的数据,并不会覆盖表中的全部分区的数据。
#!/bin/bash # 定义变量方便修改 APP=gmall hive=/opt/module/hive/bin/hive # 如果是输入的日期按照取输入日期;如果没输入日期取当前时间的前一天 if [ -n "$1" ] ;then do_date=$1 else do_date=`date -d "-1 day" +%F` fi sql=" add jar /opt/module/hive/hivefunction-1.0-SNAPSHOT.jar; create temporary function base_analizer as 'com.atguigu.udf.BaseFieldUDF'; create temporary function flat_analizer as 'com.atguigu.udtf.EventJsonUDTF'; set hive.exec.dynamic.partition.mode=nonstrict; insert overwrite table "$APP".dwd_base_event_log PARTITION (dt='$do_date') select mid_id, user_id, version_code, version_name, lang, source , os , area , model , brand , sdk_version , gmail , height_width , network , lng , lat , app_time , event_name , event_json , server_time from ( select split(base_analizer(line,'mid,uid,vc,vn,l,sr,os,ar,md,ba,sv,g,hw,t,nw,ln,la'),'\t')[0] as mid_id, split(base_analizer(line,'mid,uid,vc,vn,l,sr,os,ar,md,ba,sv,g,hw,t,nw,ln,la'),'\t')[1] as user_id, split(base_analizer(line,'mid,uid,vc,vn,l,sr,os,ar,md,ba,sv,g,hw,t,nw,ln,la'),'\t')[2] as version_code, split(base_analizer(line,'mid,uid,vc,vn,l,sr,os,ar,md,ba,sv,g,hw,t,nw,ln,la'),'\t')[3] as version_name, split(base_analizer(line,'mid,uid,vc,vn,l,sr,os,ar,md,ba,sv,g,hw,t,nw,ln,la'),'\t')[4] as lang, split(base_analizer(line,'mid,uid,vc,vn,l,sr,os,ar,md,ba,sv,g,hw,t,nw,ln,la'),'\t')[5] as source, split(base_analizer(line,'mid,uid,vc,vn,l,sr,os,ar,md,ba,sv,g,hw,t,nw,ln,la'),'\t')[6] as os, split(base_analizer(line,'mid,uid,vc,vn,l,sr,os,ar,md,ba,sv,g,hw,t,nw,ln,la'),'\t')[7] as area, split(base_analizer(line,'mid,uid,vc,vn,l,sr,os,ar,md,ba,sv,g,hw,t,nw,ln,la'),'\t')[8] as model, split(base_analizer(line,'mid,uid,vc,vn,l,sr,os,ar,md,ba,sv,g,hw,t,nw,ln,la'),'\t')[9] as brand, split(base_analizer(line,'mid,uid,vc,vn,l,sr,os,ar,md,ba,sv,g,hw,t,nw,ln,la'),'\t')[10] as sdk_version, split(base_analizer(line,'mid,uid,vc,vn,l,sr,os,ar,md,ba,sv,g,hw,t,nw,ln,la'),'\t')[11] as gmail, split(base_analizer(line,'mid,uid,vc,vn,l,sr,os,ar,md,ba,sv,g,hw,t,nw,ln,la'),'\t')[12] as height_width, split(base_analizer(line,'mid,uid,vc,vn,l,sr,os,ar,md,ba,sv,g,hw,t,nw,ln,la'),'\t')[13] as app_time, split(base_analizer(line,'mid,uid,vc,vn,l,sr,os,ar,md,ba,sv,g,hw,t,nw,ln,la'),'\t')[14] as network, split(base_analizer(line,'mid,uid,vc,vn,l,sr,os,ar,md,ba,sv,g,hw,t,nw,ln,la'),'\t')[15] as lng, split(base_analizer(line,'mid,uid,vc,vn,l,sr,os,ar,md,ba,sv,g,hw,t,nw,ln,la'),'\t')[16] as lat, split(base_analizer(line,'mid,uid,vc,vn,l,sr,os,ar,md,ba,sv,g,hw,t,nw,ln,la'),'\t')[17] as ops, split(base_analizer(line,'mid,uid,vc,vn,l,sr,os,ar,md,ba,sv,g,hw,t,nw,ln,la'),'\t')[18] as server_time from "$APP".ods_event_log where dt='$do_date' and base_analizer(line,'mid,uid,vc,vn,l,sr,os,ar,md,ba,sv,g,hw,t,nw,ln,la')<>'' ) sdk_log lateral view flat_analizer(ops) tmp_k as event_name, event_json; " $hive -e "$sql"
二 特定事件明细表
特定事件明细表与基础事件明细表的字段大体一样,只是有2处改动
①去掉event_name字段,因为此表中存的就是这一类事件,不再需要event_name来区分。
②将event_json中描述事件详情的kv取出来,形成新的字段。
以商品点击表为例,建表语句如下。去掉了event_name字段,新增了kv信息中的action,goodsid,place,extend1,category五个字段。
drop table if exists dwd_display_log; CREATE EXTERNAL TABLE dwd_display_log( `mid_id` string, `user_id` string, `version_code` string, `version_name` string, `lang` string, `source` string, `os` string, `area` string, `model` string, `brand` string, `sdk_version` string, `gmail` string, `height_width` string, `app_time` string, `network` string, `lng` string, `lat` string, `action` string, `goodsid` string, `place` string, `extend1` string, `category` string, `server_time` string ) PARTITIONED BY (dt string) location '/warehouse/gmall/dwd/dwd_display_log/';
然后是利用脚本,将数据从事件基础明细表,导入到特定的事件明细表。下面是一个包含了商品点击,详情,列表,广告,消息通知等事件的完整脚本,虽然很长,但是每一种事件的处理逻辑都是一样的。
①get_json_object(event_json,'$.kv.action')是一个hive内置的函数,可以从json串中取值,$符号表示此json本身。
②where dt='$do_date' and event_name='display' 通过上一步处理的事件名称来区分,以导入不同的事件明细表。
#!/bin/bash # 定义变量方便修改 APP=gmall hive=/opt/module/hive/bin/hive # 如果是输入的日期按照取输入日期;如果没输入日期取当前时间的前一天 if [ -n "$1" ] ;then do_date=$1 else do_date=`date -d "-1 day" +%F` fi sql=" set hive.exec.dynamic.partition.mode=nonstrict; insert overwrite table "$APP".dwd_display_log PARTITION (dt='$do_date') select mid_id, user_id, version_code, version_name, lang, source, os, area, model, brand, sdk_version, gmail, height_width, app_time, network, lng, lat, get_json_object(event_json,'$.kv.action') action, get_json_object(event_json,'$.kv.goodsid') goodsid, get_json_object(event_json,'$.kv.place') place, get_json_object(event_json,'$.kv.extend1') extend1, get_json_object(event_json,'$.kv.category') category, server_time from "$APP".dwd_base_event_log where dt='$do_date' and event_name='display'; insert overwrite table "$APP".dwd_newsdetail_log PARTITION (dt='$do_date') select mid_id, user_id, version_code, version_name, lang, source, os, area, model, brand, sdk_version, gmail, height_width, app_time, network, lng, lat, get_json_object(event_json,'$.kv.entry') entry, get_json_object(event_json,'$.kv.action') action, get_json_object(event_json,'$.kv.goodsid') goodsid, get_json_object(event_json,'$.kv.showtype') showtype, get_json_object(event_json,'$.kv.news_staytime') news_staytime, get_json_object(event_json,'$.kv.loading_time') loading_time, get_json_object(event_json,'$.kv.type1') type1, get_json_object(event_json,'$.kv.category') category, server_time from "$APP".dwd_base_event_log where dt='$do_date' and event_name='newsdetail'; insert overwrite table "$APP".dwd_loading_log PARTITION (dt='$do_date') select mid_id, user_id, version_code, version_name, lang, source, os, area, model, brand, sdk_version, gmail, height_width, app_time, network, lng, lat, get_json_object(event_json,'$.kv.action') action, get_json_object(event_json,'$.kv.loading_time') loading_time, get_json_object(event_json,'$.kv.loading_way') loading_way, get_json_object(event_json,'$.kv.extend1') extend1, get_json_object(event_json,'$.kv.extend2') extend2, get_json_object(event_json,'$.kv.type') type, get_json_object(event_json,'$.kv.type1') type1, server_time from "$APP".dwd_base_event_log where dt='$do_date' and event_name='loading'; insert overwrite table "$APP".dwd_ad_log PARTITION (dt='$do_date') select mid_id, user_id, version_code, version_name, lang, source, os, area, model, brand, sdk_version, gmail, height_width, app_time, network, lng, lat, get_json_object(event_json,'$.kv.entry') entry, get_json_object(event_json,'$.kv.action') action, get_json_object(event_json,'$.kv.content') content, get_json_object(event_json,'$.kv.detail') detail, get_json_object(event_json,'$.kv.source') ad_source, get_json_object(event_json,'$.kv.behavior') behavior, get_json_object(event_json,'$.kv.newstype') newstype, get_json_object(event_json,'$.kv.show_style') show_style, server_time from "$APP".dwd_base_event_log where dt='$do_date' and event_name='ad'; insert overwrite table "$APP".dwd_notification_log PARTITION (dt='$do_date') select mid_id, user_id, version_code, version_name, lang, source, os, area, model, brand, sdk_version, gmail, height_width, app_time, network, lng, lat, get_json_object(event_json,'$.kv.action') action, get_json_object(event_json,'$.kv.noti_type') noti_type, get_json_object(event_json,'$.kv.ap_time') ap_time, get_json_object(event_json,'$.kv.content') content, server_time from "$APP".dwd_base_event_log where dt='$do_date' and event_name='notification'; insert overwrite table "$APP".dwd_active_foreground_log PARTITION (dt='$do_date') select mid_id, user_id, version_code, version_name, lang, source, os, area, model, brand, sdk_version, gmail, height_width, app_time, network, lng, lat, get_json_object(event_json,'$.kv.push_id') push_id, get_json_object(event_json,'$.kv.access') access, server_time from "$APP".dwd_base_event_log where dt='$do_date' and event_name='active_foreground'; insert overwrite table "$APP".dwd_active_background_log PARTITION (dt='$do_date') select mid_id, user_id, version_code, version_name, lang, source, os, area, model, brand, sdk_version, gmail, height_width, app_time, network, lng, lat, get_json_object(event_json,'$.kv.active_source') active_source, server_time from "$APP".dwd_base_event_log where dt='$do_date' and event_name='active_background'; insert overwrite table "$APP".dwd_comment_log PARTITION (dt='$do_date') select mid_id, user_id, version_code, version_name, lang, source, os, area, model, brand, sdk_version, gmail, height_width, app_time, network, lng, lat, get_json_object(event_json,'$.kv.comment_id') comment_id, get_json_object(event_json,'$.kv.userid') userid, get_json_object(event_json,'$.kv.p_comment_id') p_comment_id, get_json_object(event_json,'$.kv.content') content, get_json_object(event_json,'$.kv.addtime') addtime, get_json_object(event_json,'$.kv.other_id') other_id, get_json_object(event_json,'$.kv.praise_count') praise_count, get_json_object(event_json,'$.kv.reply_count') reply_count, server_time from "$APP".dwd_base_event_log where dt='$do_date' and event_name='comment'; insert overwrite table "$APP".dwd_favorites_log PARTITION (dt='$do_date') select mid_id, user_id, version_code, version_name, lang, source, os, area, model, brand, sdk_version, gmail, height_width, app_time, network, lng, lat, get_json_object(event_json,'$.kv.id') id, get_json_object(event_json,'$.kv.course_id') course_id, get_json_object(event_json,'$.kv.userid') userid, get_json_object(event_json,'$.kv.add_time') add_time, server_time from "$APP".dwd_base_event_log where dt='$do_date' and event_name='favorites'; insert overwrite table "$APP".dwd_praise_log PARTITION (dt='$do_date') select mid_id, user_id, version_code, version_name, lang, source, os, area, model, brand, sdk_version, gmail, height_width, app_time, network, lng, lat, get_json_object(event_json,'$.kv.id') id, get_json_object(event_json,'$.kv.userid') userid, get_json_object(event_json,'$.kv.target_id') target_id, get_json_object(event_json,'$.kv.type') type, get_json_object(event_json,'$.kv.add_time') add_time, server_time from "$APP".dwd_base_event_log where dt='$do_date' and event_name='praise'; insert overwrite table "$APP".dwd_error_log PARTITION (dt='$do_date') select mid_id, user_id, version_code, version_name, lang, source, os, area, model, brand, sdk_version, gmail, height_width, app_time, network, lng, lat, get_json_object(event_json,'$.kv.errorBrief') errorBrief, get_json_object(event_json,'$.kv.errorDetail') errorDetail, server_time from "$APP".dwd_base_event_log where dt='$do_date' and event_name='error'; " $hive -e "$sql"