算法的思路我就不说了,我就提供一个万能模板,适用于任何纬度数据集。
虽然代码类似于梯度下降,但他是个分类算法
定义sigmoid函数
def sigmoid(x):
return 1/(1+np.exp(-x))
进行逻辑回归的参数设置以及迭代
def weights(x,y,alpha,thershold):
m,n = x_train.shape
theta = np.random.rand(n)
cnt = 0
max_iter = 50000
while cnt < max_iter:
cnt += 1
diff = np.full(n,0)
for i in range(m):
diff = (y[i]-sigmoid(theta.T @ x[i]))*x[i]
theta = theta + alpha * diff
if(abs(diff)<thershold).all():
break
return theta
预测函数
def predict(x_test,theta):
if sigmoid(theta.T @ x_test)>0.5:
return 1
else:return 0
调用函数
x_train = np.array([[1,2.697,6.254],
[1,1.872,2.014],
[1,2.312,0.812],
[1,1.983,4.990],
[1,0.932,3.920],
[1,1.321,5.583],
[1,2.215,1.560],
[1,1.659,2.932],
[1,0.865,7.362],
[1,1.685,4.763],
[1,1.786,2.523]])
y_train = np.array([1,0,0,1,0,1,0,0,1,0,1])
alpha = 0.001
thershold = 0.01
print(weights(x_train,y_train,alpha,thershold))