open CV颜色空间转换

颜色空间转换

使用工具Python3.5
使用包cv2,numpy
涉及函数cv2.cvtColor(),cv2.inRange()

转换颜色空间

在 OpenCV 中有 超过150 种进行颜色空间转换的方法。但是你以后就会发现我们经常用到的也就两种:BGR↔Gray 和 BGR↔HSV。
对于BGR↔Gray的转换,我们使用的flag就是cv2.COLOR_BGR2GRAY。
同样对于BGR↔HSV的转换我们用的flag就是cv2.COLOR_BGR2HSV。
在 OpenCV 的 HSV 格式中,H(色彩/色度)的取值范围是 [0,179], S(饱和度)的取值范围 [0,255],V(亮度)的取值范围 [0,255]。但是不同的软件使用的值可能不同。所以当你拿 OpenCV 的 HSV 值与其他软件的 HSV 值对比时,一定要记得归一化。
在 HSV 颜色空间中要比在 BGR 空间中更容易表示一个特定颜色。在我们的程序中,我们提取的是一个蓝色的物体。下就是就是我们做的几步:
• 从视频中获取每一帧图像
• 将图像换到 HSV 空间
• 设置 HSV 阀值到蓝色范围。
• 获取蓝色物体,当然我们可以做其他任何我们想做的事,比如:在蓝色物体周围画一个圈。

import cv2
import numpy as np

cap = cv2.VideoCapture(0)

while(1):
    #获取每一帧
    ret,frame = cap.read()
    #转换到HSV
    hsv = cv2.cvtColor(frame,cv2.COLOR_BGR2HSV)
    #设定蓝色的阀值
    lower_blue = np.array([110,50,50])
    upper_blue = np.array([130,255,255])
    #根据阀值构建掩模
    mask = cv2.inRange(hsv,lower_blue,upper_blue)
    #对原图和掩模进行位运算
    res = cv2.bitwise_and(frame,frame,mask=mask)
    #显示图像
    cv2.imshow('frame',frame)
    cv2.imshow('mask',mask)
    cv2.imshow('res',res)
    k = cv2.waitKey(5)&0xFF
    if k == 27:
        break
#关闭窗口
cv2.destroyAllWindows()

追踪物体轮廓,以后可以找物体中心,然后跟踪物体,可以在摄像头前挥挥手就可以画图等一些有趣的事

找到要跟踪对象的HSV值

在终端输入以下命令:
import cv2
import numpy as np
⚠️
//不能用 [0,255,0] 而用 [[[0,255,0]]]
//的三层括号应分别对应于 cvArray cvMat IplImage
green=np.uint8([0,255,0])
hsv_green=cv2.cvtColor(green,cv2.COLOR_BGR2HSV)
print (hsv_green )
[[[60 255 255]]]
现在你可以分别用 [H-100,100,100] 和 [H+100,255,255] 做上下阀值。但是后别忘了调节 HSV 的范围。

一般对颜色空间的图像进行有效处理都是在HSV空间进行的,然后对于基本色中对应的HSV分量需要给定一个严格的范围,下面是通过实验计算的模糊范围(准确的范围在网上都没有给出)。

H: 0 — 180

S: 0 — 255

V: 0 — 255

此处把部分红色归为紫色范围:
在这里插入图片描述

你可能感兴趣的:(open CV颜色空间转换)