Python介绍
Python的创始人为吉多·范罗苏姆(Guido van Rossum)。1989年的圣诞节期间,Guido开始写Python语言的编译器。Python这个名字,来自Guido所挚爱的电视剧Monty Python’s Flying Circus。他希望这个新的叫做Python的语言,能符合他的理想:创造一种C和shell之间,功能全面,易学易用,可拓展的语言。
最新的TIOBE排行榜,Python赶超C++占据第3, 与Java、C一起成为全球最流行的3大编程语言。
Python崇尚优美、清晰、简单,上手简单,非常适合做为第一门编程语言来学习。
Python可以应用于众多领域,如:数据分析、组件集成、网络服务、图像处理、数值计算和科学计算等众多领域。目前业内几乎所有大中型互联网企业都在使用Python,如:Youtube、Dropbox、BT、Quora(中国知乎)、豆瓣、知乎、Google、Yahoo!、Facebook、NASA、百度、腾讯、汽车之家、美团等。
目前Python主要应用领域:
WEB开发——最火的Python web框架Django, 支持异步高并发的Tornado框架,短小精悍的flask,bottle, Django官方的标语把Django定义为the framework for perfectionist with deadlines(大意是一个为完全主义者开发的高效率web框架)
网络编程——支持高并发的Twisted网络框架, py3引入的asyncio使异步编程变的非常简单
爬虫——爬虫领域,Python几乎是霸主地位,Scrapy\Request\BeautifuSoap\urllib等,想爬啥就爬啥
云计算——目前最火最知名的云计算框架就是OpenStack,Python现在的火,很大一部分就是因为云计算
人工智能、数据分析—— Python 是目前公认的人工智能和数据分析领域的必备语言
自动化运维——问问中国的每个运维人员,运维人员必须会的语言是什么?10个人相信会给你一个相同的答案,它的名字叫Python
金融分析——我个人之前在金融行业,10年的时候,我们公司写的好多分析程序、高频交易软件就是用的Python,到目前,Python是金融分析、量化交易领域里用的最多的语言
科学运算—— 97年开始,NASA就在大量使用Python在进行各种复杂的科学运算,随着NumPy, SciPy, Matplotlib, Enthought librarys等众多程序库的开发,使的Python越来越适合于做科学计算、绘制高质量的2D和3D图像。和科学计算领域最流行的商业软件Matlab相比,Python是一门通用的程序设计语言,比Matlab所采用的脚本语言的应用范围更广泛
游戏开发——在网络游戏开发中Python也有很多应用。相比Lua or C++,Python 比 Lua 有更高阶的抽象能力,可以用更少的代码描述游戏业务逻辑,与 Lua 相比,Python 更适合作为一种 Host 语言,即程序的入口点是在 Python 那一端会比较好,然后用 C/C++ 在非常必要的时候写一些扩展。Python 非常适合编写 1 万行以上的项目,而且能够很好地把网游项目的规模控制在 10 万行代码以内。另外据我所知,知名的游戏<文明> 就是用Python写的
Python在一些公司的应用:
谷歌:Google App Engine 、code.google.com 、Google earth 、谷歌爬虫、Google广告等项目都在大量使用Python开发
CIA: 美国中情局网站就是用Python开发的
NASA: 美国航天局(NASA)大量使用Python进行数据分析和运算
YouTube:世界上最大的视频网站YouTube就是用Python开发的
Dropbox:美国最大的在线云存储网站,全部用Python实现,每天网站处理10亿个文件的上传和下载
Instagram:美国最大的图片分享社交网站,每天超过3千万张照片被分享,全部用python开发
Facebook:大量的基础库均通过Python实现的
Redhat: 世界上最流行的Linux发行版本中的yum包管理工具就是用python开发的
豆瓣: 公司几乎所有的业务均是通过Python开发的
知乎: 国内最大的问答社区,通过Python开发(国外Quora)
春雨医生:国内知名的在线医疗网站是用Python开发的
除上面之外,还有搜狐、金山、腾讯、盛大、网易、百度、阿里、淘宝 、土豆、新浪、果壳等公司都在使用Python完成各种各样的任务。
Python的发展史
1989年,Guido开始写Python语言的编译器。
1991年,第一个Python编译器诞生。它是用C语言实现的,并能够调用C语言的库文件。从一出生,Python已经具有了:类,函数,异常处理,包含表和词典在内的核心数据类型,以及模块为基础的拓展系统。
Granddaddy of Python web frameworks, Zope 1 was released in 1999
Python 1.0 - January 1994 增加了 lambda, map, filter and reduce.
Python 2.0 - October 16, 2000,加入了内存回收机制,构成了现在Python语言框架的基础
Python 2.4 - November 30, 2004, 同年目前最流行的WEB框架Django 诞生
Python 2.5 - September 19, 2006
Python 2.6 - October 1, 2008
Python 2.7 - July 3, 2010
In November 2014, it was announced that Python 2.7 would be supported until 2020, and reaffirmed that there would be no 2.8 release as users were expected to move to Python 3.4+ as soon as possible
Python 3.0 - December 3, 2008 (这里要解释清楚 为什么08年就出3.0,2010年反而又推出了2.7?是因为3.0不向下兼容2.0,导致大家都拒绝升级3.0,无奈官方只能推出2.7过渡版本)
Python 3.1 - June 27, 2009
Python 3.2 - February 20, 2011
Python 3.3 - September 29, 2012
Python 3.4 - March 16, 2014
Python 3.5 - September 13, 2015
Python 3.6 - 2016-12-23 发布python3.6.0版
Python的发展前景怎么样?
知乎上有一篇文章,问Python未来10年的发展前景,请去看一下Alex的回答
未来十年Python的前景会怎样? https://www.zhihu.com/question/22112542/answer/166053516
Python 2 or Python 3 ?
In summary : Python 2.x is legacy, Python 3.x is the present and future of the language
Python 3.0 was released in 2008. The final 2.x version 2.7 release came out in mid-2010, with a statement of
extended support for this end-of-life release. The 2.x branch will see no new major releases after that. 3.x is
under active development and has already seen over five years of stable releases, including version 3.3 in 2012,
3.4 in 2014, and 3.5 in 2015. This means that all recent standard library improvements, for example, are only
available by default in Python 3.x.
Guido van Rossum (the original creator of the Python language) decided to clean up Python 2.x properly, with less regard for backwards compatibility than is the case for new releases in the 2.x range. The most drastic improvement is the better Unicode support (with all text strings being Unicode by default) as well as saner bytes/Unicode separation.
Besides, several aspects of the core language (such as print and exec being statements, integers using floor division) have been adjusted to be easier for newcomers to learn and to be more consistent with the rest of the language, and old cruft has been removed (for example, all classes are now new-style, “range()” returns a memory efficient iterable, not a list as in 2.x).
目前虽然业内不少企业还在大量使用 2.7,因为旧项目几十万甚至上百万行的代码想快速升级到3.0不是件容易的事,但是大家在开发新项目时几乎都会使用3.x。
另外Python3 确实想比2.x做了很多的改进,直观点来讲,就像从XP升级到Win7的感觉一样,棒棒的。
Py2 和Py3的具体细节区别我们在以后课程中会慢慢深入。
Python的优缺点
先看优点
Python的定位是“优雅”、“明确”、“简单”,所以Python程序看上去总是简单易懂,初学者学Python,不但入门容易,而且将来深入下去,可以编写那些非常非常复杂的程序。
开发效率非常高,Python有非常强大的第三方库,基本上你想通过计算机实现任何功能,Python官方库里都有相应的模块进行支持,直接下载调用后,在基础库的基础上再进行开发,大大降低开发周期,避免重复造轮子。
高级语言————当你用Python语言编写程序的时候,你无需考虑诸如如何管理你的程序使用的内存一类的底层细节
可移植性————由于它的开源本质,Python已经被移植在许多平台上(经过改动使它能够工 作在不同平台上)。如果你小心地避免使用依赖于系统的特性,那么你的所有Python程序无需修改就几乎可以在市场上所有的系统平台上运行
可扩展性————如果你需要你的一段关键代码运行得更快或者希望某些算法不公开,你可以把你的部分程序用C或C++编写,然后在你的Python程序中使用它们。
可嵌入性————你可以把Python嵌入你的C/C++程序,从而向你的程序用户提供脚本功能。
再看缺点:
速度慢,Python 的运行速度相比C语言确实慢很多,跟JAVA相比也要慢一些,因此这也是很多所谓的大牛不屑于使用Python的主要原因,但其实这里所指的运行速度慢在大多数情况下用户是无法直接感知到的,必须借助测试工具才能体现出来,比如你用C运一个程序花了0.01s,用Python是0.1s,这样C语言直接比Python快了10倍,算是非常夸张了,但是你是无法直接通过肉眼感知的,因为一个正常人所能感知的时间最小单位是0.15-0.4s左右,哈哈。其实在大多数情况下Python已经完全可以满足你对程序速度的要求,除非你要写对速度要求极高的搜索引擎等,这种情况下,当然还是建议你用C去实现的。
代码不能加密,因为PYTHON是解释性语言,它的源码都是以名文形式存放的,不过我不认为这算是一个缺点,如果你的项目要求源代码必须是加密的,那你一开始就不应该用Python来去实现。
线程不能利用多核问题,这是Python被人诟病最多的一个缺点,GIL即全局解释器锁(Global Interpreter Lock),是计算机程序设计语言解释器用于同步线程的工具,使得任何时刻仅有一个线程在执行,Python的线程是操作系统的原生线程。在Linux上为pthread,在Windows上为Win thread,完全由操作系统调度线程的执行。一个python解释器进程内有一条主线程,以及多条用户程序的执行线程。即使在多核CPU平台上,由于GIL的存在,所以禁止多线程的并行执行。关于这个问题的折衷解决方法,我们在以后线程和进程章节里再进行详细探讨。
当然,Python还有一些其它的小缺点,在这就不一一列举了,我想说的是,任何一门语言都不是完美的,都有擅长和不擅长做的事情,建议各位不要拿一个语言的劣势去跟另一个语言的优势来去比较,语言只是一个工具,是实现程序设计师思想的工具,就像我们之前中学学几何时,有的时候需要要圆规,有的时候需要用三角尺一样,拿相应的工具去做它最擅长的事才是正确的选择。之前很多人问我Shell和Python到底哪个好?我回答说Shell是个脚本语言,但Python不只是个脚本语言,能做的事情更多,然后又有钻牛角尖的人说完全没必要学Python, Python能做的事情Shell都可以做,只要你足够牛B,然后又举了用Shell可以写俄罗斯方块这样的游戏,对此我能说表达只能是,不要跟SB理论,SB会把你拉到跟他一样的高度,然后用充分的经验把你打倒。