废话不多说啦这次,直接上代码咯
cifar-10数据集官网:http://www.cs.toronto.edu/~kriz/cifar.html?usg=alkjrhjqbhw2llxlo8emqns-tbk0at96jq
该数据集是一个 10 分类数据集:飞机( airplane )、汽车( automobile )、鸟类( bird )、猫( cat )、鹿( deer )、狗( dog )、蛙类( frog )、马( horse )、船( ship )和卡车( truck )。
每张图片的尺寸为32 × 32 ,每个类别有6000个图像,数据集中一共有50000 张训练图片和10000 张测试图片(32×32真的是太小了,,,)。
(代码在 Baidu AI Studio 上运行)
#导入需要的包
import paddle as paddle
import paddle.fluid as fluid
import numpy as np
from PIL import Image
import matplotlib.pyplot as plt
import os
print(os.getcwd()) # 查看工作路径
!mkdir -p /home/aistudio/.cache/paddle/dataset/cifar/
!wget "http://ai-atest.bj.bcebos.com/cifar-10-python.tar.gz" -O cifar-10-python.tar.gz
!mv cifar-10-python.tar.gz /home/aistudio/.cache/paddle/dataset/cifar/
!ls -a /home/aistudio/.cache/paddle/dataset/cifar/
! 表示使用命令行命令,这几步就是:创建文件夹+下载数据+移动数据+看一下文件
BATCH_SIZE = 64
#用于训练的数据提供器
train_reader = paddle.batch(
paddle.reader.shuffle(paddle.dataset.cifar.train10(),
buf_size=BATCH_SIZE * 100),
batch_size=BATCH_SIZE)
#用于测试的数据提供器
test_reader = paddle.batch(
paddle.dataset.cifar.test10(),
batch_size=BATCH_SIZE)
这里定义了一个有4个残差单元的ResNet,每个残差单元的层数为3,深度分别为:16, 32, 32, 64;残差结构中使用elu函数激活:
class DistResNet():
def __init__(self, is_train=True):
self.is_train = is_train
self.weight_decay = 1e-4
def net(self, input, class_dim=10):
depth = [3, 3, 3, 3]
num_filters = [16, 32, 32, 64]
conv = self.conv_bn_layer(
input=input, num_filters=16, filter_size=3, act='elu')
conv = fluid.layers.pool2d(
input=conv,
pool_size=3,
pool_stride=2,
pool_padding=1,
pool_type='max')
for block in range(len(depth)):
for i in range(depth[block]):
conv = self.bottleneck_block(
input=conv,
num_filters=num_filters[block],
stride=2 if i == 0 and block != 0 else 1)
conv = fluid.layers.batch_norm(input=conv, act='elu')
print(conv.shape)
pool = fluid.layers.pool2d(
input=conv, pool_size=2, pool_type='avg', global_pooling=True)
stdv = 1.0 / math.sqrt(pool.shape[1] * 1.0)
out = fluid.layers.fc(input=pool,
size=class_dim,
act="softmax",
param_attr=fluid.param_attr.ParamAttr(
initializer=fluid.initializer.Uniform(-stdv,
stdv),
regularizer=fluid.regularizer.L2Decay(self.weight_decay)),
bias_attr=fluid.ParamAttr(
regularizer=fluid.regularizer.L2Decay(self.weight_decay))
)
return out
def conv_bn_layer(self,
input,
num_filters,
filter_size,
stride=1,
groups=1,
act=None,
bn_init_value=1.0):
conv = fluid.layers.conv2d(
input=input,
num_filters=num_filters,
filter_size=filter_size,
stride=stride,
padding=(filter_size - 1) // 2,
groups=groups,
act=None,
bias_attr=False,
param_attr=fluid.ParamAttr(regularizer=fluid.regularizer.L2Decay(self.weight_decay)))
return fluid.layers.batch_norm(
input=conv, act=act, is_test=not self.is_train,
param_attr=fluid.ParamAttr(
initializer=fluid.initializer.Constant(bn_init_value),
regularizer=None))
def shortcut(self, input, ch_out, stride):
ch_in = input.shape[1]
if ch_in != ch_out or stride != 1:
return self.conv_bn_layer(input, ch_out, 1, stride)
else:
return input
def bottleneck_block(self, input, num_filters, stride):
conv0 = self.conv_bn_layer(
input=input, num_filters=num_filters, filter_size=1, act='relu')
conv1 = self.conv_bn_layer(
input=conv0,
num_filters=num_filters,
filter_size=3,
stride=stride,
act='relu')
conv2 = self.conv_bn_layer(
input=conv1, num_filters=num_filters * 4, filter_size=1, act=None, bn_init_value=0.0)
short = self.shortcut(input, num_filters * 4, stride)
return fluid.layers.elementwise_add(x=short, y=conv2, act='relu')
这里定义输入和标签的占位符:
data_shape = [3, 32, 32]
images = fluid.layers.data(name='images', shape=data_shape, dtype='float32')
label = fluid.layers.data(name='label', shape=[1], dtype='int64')
这里定义网络输出:
import math
model = DistResNet()
predict = model.net(images)
使用交叉熵损失函数:
cost = fluid.layers.cross_entropy(input=predict, label=label) # 交叉熵
avg_cost = fluid.layers.mean(cost) # 计算cost中所有元素的平均值
acc = fluid.layers.accuracy(input=predict, label=label) #使用输入和标签计算准确率
定义Adam优化器:
optimizer =fluid.optimizer.Adam(learning_rate=2e-4)
optimizer.minimize(avg_cost)
这里需要注意的是,我们需要通过fluid.CUDAPlace(0)指定GPU计算:
place = fluid.CUDAPlace(0)
exe = fluid.Executor(place)
exe.run(fluid.default_startup_program())
feeder = fluid.DataFeeder( feed_list=[images, label],place=place)
iter=0
iters=[]
train_costs=[]
train_accs=[]
def draw_train_process(iters, train_costs, train_accs):
title="training costs/training accs"
plt.title(title, fontsize=24)
plt.xlabel("iter", fontsize=14)
plt.ylabel("cost/acc", fontsize=14)
plt.plot(iters, train_costs, color='red', label='training costs')
plt.plot(iters, train_accs, color='green', label='training accs')
plt.legend()
plt.grid()
plt.show()
这里检测之前是否训练并保存过模型,如果保存过就重新加载:
EPOCH_NUM = 50
model_save_dir = "/home/aistudio/data/catdog.inference.model"
if os.path.exists(model_save_dir):
fluid.io.load_params(executor=exe, dirname=model_save_dir, main_program=None)
print('reloaded.')
for pass_id in range(EPOCH_NUM):
# 开始训练
train_cost = 0
for batch_id, data in enumerate(train_reader()):
train_cost,train_acc = exe.run(program=fluid.default_main_program(),
feed=feeder.feed(data),
fetch_list=[avg_cost, acc])
if batch_id % 100 == 0:
# print('Pass:%d, Batch:%d, Cost:%0.5f, Accuracy:%0.5f' %
# (pass_id, batch_id, train_cost[0], train_acc[0]))
print('Pass:%d, Batch:%d, Cost:%0.5f, Accuracy:%0.5f' %
(pass_id, batch_id, np.mean(train_cost), np.mean(train_acc)))
iter=iter+BATCH_SIZE
iters.append(iter)
train_costs.append(np.mean(train_cost))
train_accs.append(np.mean(train_acc))
# 开始测试
test_costs = [] #测试的损失值
test_accs = [] #测试的准确率
for batch_id, data in enumerate(test_reader()):
test_cost, test_acc = exe.run(program=fluid.default_main_program(), #运行测试程序
feed=feeder.feed(data), #喂入一个batch的数据
fetch_list=[avg_cost, acc]) #fetch均方误差、准确率
test_costs.append(test_cost[0]) #记录每个batch的误差
test_accs.append(test_acc[0]) #记录每个batch的准确率
test_cost = (sum(test_costs) / len(test_costs)) #计算误差平均值(误差和/误差的个数)
test_acc = (sum(test_accs) / len(test_accs)) #计算准确率平均值( 准确率的和/准确率的个数)
print('Test:%d, Cost:%0.5f, ACC:%0.5f' % (pass_id, test_cost, test_acc))
#保存模型
if not os.path.exists(model_save_dir):
os.makedirs(model_save_dir)
fluid.io.save_inference_model(model_save_dir,
['images'],
[predict],
exe)
print('训练模型保存完成!')
draw_train_process(iters, train_costs,train_accs)
print(os.getcwd())
infer_exe = fluid.Executor(place)
inference_scope = fluid.core.Scope()
def load_image(file):
#打开图片
im = Image.open(file)
#将图片调整为跟训练数据一样的大小 32*32, 设定ANTIALIAS,即抗锯齿.resize是缩放
im = im.resize((32, 32), Image.ANTIALIAS)
#建立图片矩阵 类型为float32
im = np.array(im).astype(np.float32)
#矩阵转置
im = im.transpose((2, 0, 1))
#将像素值从【0-255】转换为【0-1】
im = im / 255.0
#print(im)
im = np.expand_dims(im, axis=0)
# 保持和之前输入image维度一致
print('im_shape的维度:',im.shape)
return im
with fluid.scope_guard(inference_scope):
#从指定目录中加载 推理model(inference model)
[inference_program, # 预测用的program
feed_target_names, # 是一个str列表,它包含需要在推理 Program 中提供数据的变量的名称。
fetch_targets] = fluid.io.load_inference_model(model_save_dir,#fetch_targets:是一个 Variable 列表,从中我们可以得到推断结果。
infer_exe) #infer_exe: 运行 inference model的 executor
infer_path='/home/aistudio/data/data6430/img-47647-dog.png'
img = Image.open(infer_path)
img = load_image(infer_path)
results = infer_exe.run(inference_program, #运行预测程序
feed={feed_target_names[0]: img}, #喂入要预测的img
fetch_list=fetch_targets) #得到推测结果
print('results',results)
label_list = [
"airplane", "automobile", "bird", "cat", "deer", "dog", "frog", "horse",
"ship", "truck"
]
infer_path='/home/aistudio/data/data6430/img-47647-dog.png'
img = Image.open(infer_path)
print("infer results: %s" % label_list[np.argmax(results[0])])
plt.imshow(img)
plt.title("infer results: %s" % label_list[np.argmax(results[0])])
plt.show()
权重文件需要的或者对AI志同道合的炼丹师请私戳作者~
联系我时请备注所需模型权重,我会拉你进交流群~
该群会定时分享各种源码和模型,之前分享过的请从群文件中下载~