SVM预测Titanic号上成员存活率

SVM预测Titanic号上成员存活率

数据集见上一篇文章Titanic数据集可视化

文章目录

  • SVM预测Titanic号上成员存活率
    • 使用的模块
    • 导入数据,并做预处理
    • SMO算法
    • 计算 w w w
    • 在测试集上预测存活率
    • 全部代码
    • 运行结果

使用的模块

import csv
import numpy as np
import matplotlib.pyplot as plt
import copy
from time import sleep
import random
import types

导入数据,并做预处理

def loadDataset(filename):
    with open(filename, 'r') as f:
        lines = csv.reader(f)
        data_set = list(lines)
    offset = 1 if 'test' in filename else 0
    # 整理数据
    for i in range(len(data_set)):
        del(data_set[i][0])
        del(data_set[i][3-1-offset])
        data_set[i][6-2-offset] += data_set[i][7-2-offset]
        del(data_set[i][7-2-offset])
        del(data_set[i][8-3-offset])
        del(data_set[i][10-4-offset])
        del(data_set[i][11-5-offset])
        if 'train' in filename:
            survived = data_set[i].pop(0)
            data_set[i].append(survived)

    category = data_set[0]
    del (data_set[0])
    '''with open(filename, 'r') as f:
    reader = csv.reader(f)
    lines = list(reader)
    res = [0 for i in range(len(lines[0]))]
    for line in lines:
        for i in range(len(line)):
            res[i] += 1 if line[i] != '' else 0
    print(lines[0], res)'''
    #留下的特征
    # 训练集:['Pclass', 'Sex', 'Age', 'SibSpParch', 'Fare', 'Survived']
    # "Age"有缺项
    # 测试集:['Pclass', 'Sex', 'Age', 'SibSpParch', 'Fare']
    # "Age"&"Fare"有缺项
    # 转换数据格式
    for data in data_set:
        pclass = int(data[0])
        # male : 1, female : 0
        sex = 1 if data[1] == 'male' else 0
        age = int(float(data[2])) if data[2] != '' else 28
        sibspparch = float(data[3][0])+float(data[3][1])
        fare = float(data[4]) if data[4] != '' else 0
        # 补全缺失值 转换记录方式 分类
        # 经过测试,如果不将数据进行以下处理,分布会过于密集,处理后,数据的分布变得稀疏了
        # age <25 为0, 25<=age<31为1,age>=31为2
        if age < 25:
            age = 0
        elif age >= 25 and age < 60: # 但是测试得60分界准确率最高???!!!
            age = 1
        else:
            age = 2
        # sibsp&parch以2为界限,小于为0,大于为1
        if sibspparch < 2:
            sibspparch = 0
        else:
            sibspparch = 1
        # fare以64为界限
        if fare < 64:
            fare = 0
        else:
            fare = 1
        #更新数据
        data[0] = pclass 
        data[1] = sex
        data[2] = age
        data[3] = sibspparch
        data[4] = fare

        if 'train' in filename:
            data[-1] = int(data[-1])
    #print(len(data_set), category)

    return data_set, category

def split_data(data):

    data_set = copy.deepcopy(data)

    data_mat = []
    label_mat = []
    for i in range(len(data_set)):
        if data_set[i][-1] == 0:
            data_set[i][-1] = -1

        label_mat.append(data_set[i][-1])
        del(data_set[i][-1])
        data_mat.append(data_set[i])

    return data_mat, label_mat

SMO算法

def select_j_rand(i ,m):
    # 选取alpha
    j = i
    while j == i:
        j = int(random.uniform(0, m))
    return j

def clip_alptha(aj, H, L):
    # 修剪alpha
    if aj > H:
        aj = H
    if L > aj:
        aj = L

    return aj

def smo(data_mat_In, class_label, C, toler, max_iter):
    # 转化为numpy的mat存储
    data_matrix = np.mat(data_mat_In)
    label_mat = np.mat(class_label).transpose()
    # data_matrix = data_mat_In
    # label_mat = class_label
    # 初始化b,统计data_matrix的纬度
    b = 0
    m, n = np.shape(data_matrix)
    # 初始化alpha,设为0
    alphas = np.mat(np.zeros((m, 1)))
    # 初始化迭代次数
    iter_num = 0
    # 最多迭代max_iter次
    while iter_num < max_iter:
        alpha_pairs_changed = 0
        for i in range(m):
            # 计算误差Ei
            fxi = float(np.multiply(alphas, label_mat).T*(data_matrix*data_matrix[i, :].T)) + b
            Ei = fxi - float(label_mat[i])
            # 优化alpha,松弛向量
            if (label_mat[i]*Ei < -toler and alphas[i] < C) or (label_mat[i]*Ei > toler and alphas[i] > 0):
                # 随机选取另一个与alpha_j成对优化的alpha_j
                j = select_j_rand(i, m)
                # 1.计算误差Ej
                fxj = float(np.multiply(alphas, label_mat).T*(data_matrix*data_matrix[j, :].T)) + b
                Ej = fxj - float(label_mat[j])
                # 保存更新前的alpha,deepcopy
                alpha_i_old = copy.deepcopy(alphas[i])
                alpha_j_old = copy.deepcopy(alphas[j])
                # 2.计算上下界L和H
                if label_mat[i] != label_mat[j]:
                    L = max(0, alphas[j] - alphas[i])
                    H = min(C, C + alphas[j] - alphas[i])
                else:
                    L = max(0, alphas[j] + alphas[i] - C)
                    H = min(C, alphas[j] + alphas[i])
                if L == H:
                    print("L == H")
                    continue
                # 3.计算eta
                eta = 2.0 * data_matrix[i, :]*data_matrix[j, :].T - data_matrix[i, :]*data_matrix[i, :].T - data_matrix[j, :]*data_matrix[j, :].T
                if eta >= 0:
                    print("eta >= 0")
                    continue
                # 4.更新alpha_j
                alphas[j] -= label_mat[j]*(Ei - Ej)/eta
                # 5.修剪alpha_j
                alphas[j] = clip_alptha(alphas[j], H, L)
                if abs(alphas[j] - alphas[i]) < 0.001:
                    print("alpha_j变化太小")
                    continue
                # 6.更新alpha_i
                alphas[i] += label_mat[j]*label_mat[i]*(alpha_j_old - alphas[j])
                # 7.更新b_1和b_2
                b_1 = b - Ei - label_mat[i]*(alphas[i] - alpha_i_old)*data_matrix[i, :]*data_matrix[i, :].T - label_mat[j]*(alphas[j] - alpha_j_old)*data_matrix[i, :]*data_matrix[j, :].T
                b_2 = b - Ej - label_mat[i]*(alphas[i] - alpha_i_old)*data_matrix[i, :]*data_matrix[j, :].T - label_mat[j]*(alphas[j] - alpha_j_old)*data_matrix[j, :] * data_matrix[j, :].T
                # 8.根据b_1和b_2更新b
                if 0 < alphas[i] and C > alphas[i]:
                    b = b_1
                elif 0 < alphas[j] and C > alphas[j]:
                    b = b_2
                else:
                    b = (b_1 + b_2)/2
                # 统计优化次数
                alpha_pairs_changed += 1
                # 打印统计信息
                print("第%d次迭代 样本:%d , alpha优化次数:%d" % (iter_num, i, alpha_pairs_changed))
        # 更新迭代次数
        if alpha_pairs_changed == 0:
            iter_num += 1
        else:
            iter_num = 0
        print("迭代次数:%d" % iter_num)

    return b, alphas

计算 w w w

def caluelate_w(data_mat, label_mat, alphas):
    # 计算w
    alphas = np.array(alphas)
    data_mat = np.array(data_mat)
    label_mat = np.array(label_mat)

    # numpy.tile(A, reps):通过重复A给出的次数来构造数组。

    # numpy中reshape函数的三种常见相关用法
    # reshape(1, -1)转化成1行:
    # reshape(2, -1)转换成两行:
    # reshape(-1, 1)转换成1列:
    # reshape(-1, 2)转化成两列

    w = np.dot((np.tile(label_mat.reshape(1, -1).T, (1, 5))*data_mat).T, alphas)
    return w.tolist()

在测试集上预测存活率

def prediction(test, w, b):
    test = np.mat(test)
    result = []

    for i in test:
        if i*w+b > 0:
            result.append(1)
        else:
            result.append(-1)

    return result

全部代码

import csv
import numpy as np
import matplotlib.pyplot as plt
import copy
from time import sleep
import random
import types

def loadDataset(filename):
    with open(filename, 'r') as f:
        lines = csv.reader(f)
        data_set = list(lines)
    offset = 1 if 'test' in filename else 0
    # 整理数据
    for i in range(len(data_set)):
        del(data_set[i][0])
        del(data_set[i][3-1-offset])
        data_set[i][6-2-offset] += data_set[i][7-2-offset]
        del(data_set[i][7-2-offset])
        del(data_set[i][8-3-offset])
        del(data_set[i][10-4-offset])
        del(data_set[i][11-5-offset])
        if 'train' in filename:
            survived = data_set[i].pop(0)
            data_set[i].append(survived)

    category = data_set[0]
    del (data_set[0])
    '''with open(filename, 'r') as f:
    reader = csv.reader(f)
    lines = list(reader)
    res = [0 for i in range(len(lines[0]))]
    for line in lines:
        for i in range(len(line)):
            res[i] += 1 if line[i] != '' else 0
    print(lines[0], res)'''
    #留下的特征
    # 训练集:['Pclass', 'Sex', 'Age', 'SibSpParch', 'Fare', 'Survived']
    # "Age"有缺项
    # 测试集:['Pclass', 'Sex', 'Age', 'SibSpParch', 'Fare']
    # "Age"&"Fare"有缺项
    # 转换数据格式
    for data in data_set:
        pclass = int(data[0])
        # male : 1, female : 0
        sex = 1 if data[1] == 'male' else 0
        age = int(float(data[2])) if data[2] != '' else 28
        sibspparch = float(data[3][0])+float(data[3][1])
        fare = float(data[4]) if data[4] != '' else 0
        # 补全缺失值 转换记录方式 分类
        # 经过测试,如果不将数据进行以下处理,分布会过于密集,处理后,数据的分布变得稀疏了
        # age <25 为0, 25<=age<31为1,age>=31为2
        if age < 25:
            age = 0
        elif age >= 25 and age < 60: # 但是测试得60分界准确率最高???!!!
            age = 1
        else:
            age = 2
        # sibsp&parch以2为界限,小于为0,大于为1
        if sibspparch < 2:
            sibspparch = 0
        else:
            sibspparch = 1
        # fare以64为界限
        if fare < 64:
            fare = 0
        else:
            fare = 1
        #更新数据
        data[0] = pclass 
        data[1] = sex
        data[2] = age
        data[3] = sibspparch
        data[4] = fare

        if 'train' in filename:
            data[-1] = int(data[-1])
    #print(len(data_set), category)

    return data_set, category

def split_data(data):

    data_set = copy.deepcopy(data)

    data_mat = []
    label_mat = []
    for i in range(len(data_set)):
        if data_set[i][-1] == 0:
            data_set[i][-1] = -1

        label_mat.append(data_set[i][-1])
        del(data_set[i][-1])
        data_mat.append(data_set[i])

    return data_mat, label_mat


def select_j_rand(i ,m):
    # 选取alpha
    j = i
    while j == i:
        j = int(random.uniform(0, m))
    return j

def clip_alptha(aj, H, L):
    # 修剪alpha
    if aj > H:
        aj = H
    if L > aj:
        aj = L

    return aj

def smo(data_mat_In, class_label, C, toler, max_iter):
    # 转化为numpy的mat存储
    data_matrix = np.mat(data_mat_In)
    label_mat = np.mat(class_label).transpose()
    # data_matrix = data_mat_In
    # label_mat = class_label
    # 初始化b,统计data_matrix的纬度
    b = 0
    m, n = np.shape(data_matrix)
    # 初始化alpha,设为0
    alphas = np.mat(np.zeros((m, 1)))
    # 初始化迭代次数
    iter_num = 0
    # 最多迭代max_iter次
    while iter_num < max_iter:
        alpha_pairs_changed = 0
        for i in range(m):
            # 计算误差Ei
            fxi = float(np.multiply(alphas, label_mat).T*(data_matrix*data_matrix[i, :].T)) + b
            Ei = fxi - float(label_mat[i])
            # 优化alpha,松弛向量
            if (label_mat[i]*Ei < -toler and alphas[i] < C) or (label_mat[i]*Ei > toler and alphas[i] > 0):
                # 随机选取另一个与alpha_j成对优化的alpha_j
                j = select_j_rand(i, m)
                # 1.计算误差Ej
                fxj = float(np.multiply(alphas, label_mat).T*(data_matrix*data_matrix[j, :].T)) + b
                Ej = fxj - float(label_mat[j])
                # 保存更新前的alpha,deepcopy
                alpha_i_old = copy.deepcopy(alphas[i])
                alpha_j_old = copy.deepcopy(alphas[j])
                # 2.计算上下界L和H
                if label_mat[i] != label_mat[j]:
                    L = max(0, alphas[j] - alphas[i])
                    H = min(C, C + alphas[j] - alphas[i])
                else:
                    L = max(0, alphas[j] + alphas[i] - C)
                    H = min(C, alphas[j] + alphas[i])
                if L == H:
                    print("L == H")
                    continue
                # 3.计算eta
                eta = 2.0 * data_matrix[i, :]*data_matrix[j, :].T - data_matrix[i, :]*data_matrix[i, :].T - data_matrix[j, :]*data_matrix[j, :].T
                if eta >= 0:
                    print("eta >= 0")
                    continue
                # 4.更新alpha_j
                alphas[j] -= label_mat[j]*(Ei - Ej)/eta
                # 5.修剪alpha_j
                alphas[j] = clip_alptha(alphas[j], H, L)
                if abs(alphas[j] - alphas[i]) < 0.001:
                    print("alpha_j变化太小")
                    continue
                # 6.更新alpha_i
                alphas[i] += label_mat[j]*label_mat[i]*(alpha_j_old - alphas[j])
                # 7.更新b_1和b_2
                b_1 = b - Ei - label_mat[i]*(alphas[i] - alpha_i_old)*data_matrix[i, :]*data_matrix[i, :].T - label_mat[j]*(alphas[j] - alpha_j_old)*data_matrix[i, :]*data_matrix[j, :].T
                b_2 = b - Ej - label_mat[i]*(alphas[i] - alpha_i_old)*data_matrix[i, :]*data_matrix[j, :].T - label_mat[j]*(alphas[j] - alpha_j_old)*data_matrix[j, :] * data_matrix[j, :].T
                # 8.根据b_1和b_2更新b
                if 0 < alphas[i] and C > alphas[i]:
                    b = b_1
                elif 0 < alphas[j] and C > alphas[j]:
                    b = b_2
                else:
                    b = (b_1 + b_2)/2
                # 统计优化次数
                alpha_pairs_changed += 1
                # 打印统计信息
                print("第%d次迭代 样本:%d , alpha优化次数:%d" % (iter_num, i, alpha_pairs_changed))
        # 更新迭代次数
        if alpha_pairs_changed == 0:
            iter_num += 1
        else:
            iter_num = 0
        print("迭代次数:%d" % iter_num)

    return b, alphas


def caluelate_w(data_mat, label_mat, alphas):
    # 计算w
    alphas = np.array(alphas)
    data_mat = np.array(data_mat)
    label_mat = np.array(label_mat)

    # numpy.tile(A, reps):通过重复A给出的次数来构造数组。

    # numpy中reshape函数的三种常见相关用法
    # reshape(1, -1)转化成1行:
    # reshape(2, -1)转换成两行:
    # reshape(-1, 1)转换成1列:
    # reshape(-1, 2)转化成两列

    w = np.dot((np.tile(label_mat.reshape(1, -1).T, (1, 5))*data_mat).T, alphas)
    return w.tolist()


def prediction(test, w, b):
    test = np.mat(test)
    result = []

    for i in test:
        if i*w+b > 0:
            result.append(1)
        else:
            result.append(-1)

    return result


if __name__ == "__main__":
    pre_set, category_pre = loadDataset(r'D:\VS-Code-python\ML_algorithm\titanic_test.csv')
    data_set, category_train = loadDataset(r'D:\VS-Code-python\ML_algorithm\titanic_train.csv')

    data_mat, label_mat = split_data(data_set)

    test_mat = data_mat[:200]
    test_label = label_mat[:200]
    data_mat = data_mat[200:]
    label_mat = label_mat[200:]
    #训练
    b, alphas = smo(data_mat, label_mat, 0.6, 0.001, 40)
    #print(b)
    #print(alphas)
    w = caluelate_w(data_mat, label_mat, alphas)
    #print(w)

    result = prediction(test_mat, w, b)
    pd_result = prediction(pre_set, w, b)

    count = 0
    survived = 0
    pd_survived = 0
    #准确率
    for i in range(len(result)):
        if result[i] == test_label[i]:
            count += 1
    #训练集存活率
    for i in range(len(data_mat)):
        if label_mat[i] == 1:
            survived += 1
    #预测存活率
    for i in range(len(pd_result)):
        if pd_result[i] == 1:
            pd_survived += 1
    print('survive_rate_in_training_set:'+str(survived/len(data_mat)*100)+'%')
    print('accuracy:'+str(count/len(result)*100)+'%')
    print('pd_survive_rate:'+str(pd_survived/len(pd_result)*100)+'%')


运行结果

# 最终结果
survive_rate_in_training_set:39.507959479015916%
accuracy:82.0%
pd_survive_rate:36.60287081339713%
# 训练出的b
[[3.90633558]]
# 训练出的alpha
[[0.00000000e+00]
 [0.00000000e+00]
 [0.00000000e+00]
 [0.00000000e+00]
 [6.00000000e-01]
 [6.00000000e-01]
 [0.00000000e+00]
 [6.00000000e-01]
 [2.21228910e-01]
 [6.00000000e-01]
 [0.00000000e+00]
 [0.00000000e+00]
 [1.33931171e-02]
 [3.11346521e-03]
 [0.00000000e+00]
 [0.00000000e+00]
 [6.00000000e-01]
 [5.96746988e-01]
 [0.00000000e+00]
 [5.98963504e-01]
 [6.00000000e-01]
 [3.24139295e-01]
 [0.00000000e+00]
 [0.00000000e+00]
 [6.00000000e-01]
 [2.49365681e-01]
 [6.00000000e-01]
 [0.00000000e+00]
 [6.00000000e-01]
 [6.00000000e-01]
 [0.00000000e+00]
 [0.00000000e+00]
 [0.00000000e+00]
 [6.00000000e-01]
 [6.00000000e-01]
 [6.00000000e-01]
 [2.24335075e-01]
 [0.00000000e+00]
 [6.00000000e-01]
 [3.48293311e-01]
 [6.00000000e-01]
 [6.00000000e-01]
 [4.13172180e-01]
 [8.36648240e-04]
 [0.00000000e+00]
 [6.00000000e-01]
 [6.00000000e-01]
 [0.00000000e+00]
 [6.00000000e-01]
 [4.40684986e-01]
 [0.00000000e+00]
 [6.00000000e-01]
 [5.97902282e-01]
 [0.00000000e+00]
 [6.00000000e-01]
 [6.00000000e-01]
 [0.00000000e+00]
 [0.00000000e+00]
 [0.00000000e+00]
 [0.00000000e+00]
 [0.00000000e+00]
 [6.00000000e-01]
 [6.00000000e-01]
 [6.00000000e-01]
 [6.00000000e-01]
 [4.21578006e-01]
 [0.00000000e+00]
 [6.00000000e-01]
 [0.00000000e+00]
 [0.00000000e+00]
 [6.00000000e-01]
 [6.00000000e-01]
 [0.00000000e+00]
 [6.00000000e-01]
 [6.00000000e-01]
 [6.00000000e-01]
 [6.00000000e-01]
 [1.57558986e-02]
 [0.00000000e+00]
 [6.00000000e-01]
 [0.00000000e+00]
 [0.00000000e+00]
 [0.00000000e+00]
 [6.00000000e-01]
 [6.00000000e-01]
 [0.00000000e+00]
 [6.00000000e-01]
 [0.00000000e+00]
 [6.00000000e-01]
 [6.00000000e-01]
 [0.00000000e+00]
 [0.00000000e+00]
 [3.39468691e-01]
 [6.00000000e-01]
 [0.00000000e+00]
 [6.00000000e-01]
 [0.00000000e+00]
 [6.00000000e-01]
 [6.00000000e-01]
 [0.00000000e+00]
 [6.00000000e-01]
 [6.00000000e-01]
 [1.04639526e-01]
 [4.04105827e-02]
 [0.00000000e+00]
 [6.00000000e-01]
 [0.00000000e+00]
 [0.00000000e+00]
 [1.97629091e-01]
 [0.00000000e+00]
 [0.00000000e+00]
 [0.00000000e+00]
 [6.00000000e-01]
 [0.00000000e+00]
 [0.00000000e+00]
 [6.00000000e-01]
 [0.00000000e+00]
 [3.16995499e-01]
 [0.00000000e+00]
 [1.08385506e-02]
 [9.88601205e-02]
 [0.00000000e+00]
 [5.90757967e-01]
 [0.00000000e+00]
 [0.00000000e+00]
 [0.00000000e+00]
 [0.00000000e+00]
 [1.59846120e-01]
 [6.00000000e-01]
 [0.00000000e+00]
 [6.00000000e-01]
 [6.00000000e-01]
 [6.00000000e-01]
 [1.24009444e-01]
 [0.00000000e+00]
 [0.00000000e+00]
 [6.00000000e-01]
 [0.00000000e+00]
 [6.00000000e-01]
 [6.00000000e-01]
 [6.00000000e-01]
 [0.00000000e+00]
 [0.00000000e+00]
 [1.27821063e-01]
 [1.73683705e-01]
 [0.00000000e+00]
 [5.03723055e-02]
 [6.00000000e-01]
 [6.00000000e-01]
 [0.00000000e+00]
 [3.36100407e-02]
 [6.00000000e-01]
 [3.60411663e-03]
 [0.00000000e+00]
 [0.00000000e+00]
 [0.00000000e+00]
 [0.00000000e+00]
 [6.00000000e-01]
 [6.00000000e-01]
 [6.00000000e-01]
 [0.00000000e+00]
 [4.96027009e-01]
 [6.00000000e-01]
 [0.00000000e+00]
 [0.00000000e+00]
 [0.00000000e+00]
 [6.00000000e-01]
 [6.00000000e-01]
 [6.00000000e-01]
 [0.00000000e+00]
 [6.00000000e-01]
 [1.76738696e-03]
 [2.05165717e-02]
 [6.00000000e-01]
 [6.00000000e-01]
 [0.00000000e+00]
 [5.82346161e-01]
 [6.00000000e-01]
 [0.00000000e+00]
 [0.00000000e+00]
 [0.00000000e+00]
 [9.95706488e-02]
 [0.00000000e+00]
 [0.00000000e+00]
 [0.00000000e+00]
 [6.00000000e-01]
 [1.41335550e-02]
 [1.67911965e-01]
 [0.00000000e+00]
 [0.00000000e+00]
 [6.00000000e-01]
 [6.00000000e-01]
 [0.00000000e+00]
 [0.00000000e+00]
 [6.00000000e-01]
 [2.33293741e-01]
 [6.00000000e-01]
 [5.60865131e-01]
 [6.00000000e-01]
 [8.15717061e-04]
 [6.00000000e-01]
 [0.00000000e+00]
 [6.00000000e-01]
 [0.00000000e+00]
 [6.00000000e-01]
 [3.39263319e-01]
 [0.00000000e+00]
 [6.00000000e-01]
 [4.22382885e-01]
 [6.00000000e-01]
 [0.00000000e+00]
 [0.00000000e+00]
 [0.00000000e+00]
 [1.38654506e-01]
 [6.00000000e-01]
 [6.00000000e-01]
 [1.87971103e-01]
 [0.00000000e+00]
 [1.09424735e-01]
 [6.00000000e-01]
 [0.00000000e+00]
 [1.34456365e-01]
 [0.00000000e+00]
 [6.00000000e-01]
 [1.06581410e-14]
 [0.00000000e+00]
 [2.65795898e-03]
 [0.00000000e+00]
 [0.00000000e+00]
 [6.00000000e-01]
 [6.00000000e-01]
 [6.00000000e-01]
 [2.26980796e-01]
 [2.21682053e-01]
 [6.00000000e-01]
 [0.00000000e+00]
 [6.00000000e-01]
 [0.00000000e+00]
 [0.00000000e+00]
 [3.05769718e-04]
 [5.64730165e-01]
 [3.64697586e-03]
 [0.00000000e+00]
 [2.48136667e-01]
 [6.00000000e-01]
 [6.00000000e-01]
 [0.00000000e+00]
 [6.00000000e-01]
 [1.05019687e-01]
 [6.00000000e-01]
 [5.81656370e-01]
 [0.00000000e+00]
 [6.00000000e-01]
 [6.00000000e-01]
 [0.00000000e+00]
 [6.00000000e-01]
 [4.58736136e-01]
 [0.00000000e+00]
 [1.85225694e-03]
 [0.00000000e+00]
 [6.00000000e-01]
 [0.00000000e+00]
 [6.00000000e-01]
 [0.00000000e+00]
 [0.00000000e+00]
 [0.00000000e+00]
 [2.88488609e-01]
 [6.00000000e-01]
 [0.00000000e+00]
 [5.75276384e-01]
 [0.00000000e+00]
 [0.00000000e+00]
 [4.63535846e-01]
 [0.00000000e+00]
 [6.00000000e-01]
 [6.00000000e-01]
 [0.00000000e+00]
 [0.00000000e+00]
 [3.71225012e-03]
 [2.41015977e-02]
 [3.83847986e-04]
 [1.68393062e-01]
 [0.00000000e+00]
 [6.00000000e-01]
 [6.00000000e-01]
 [6.00000000e-01]
 [0.00000000e+00]
 [6.00000000e-01]
 [0.00000000e+00]
 [6.00000000e-01]
 [0.00000000e+00]
 [5.75296843e-01]
 [6.00000000e-01]
 [2.72085247e-01]
 [0.00000000e+00]
 [0.00000000e+00]
 [0.00000000e+00]
 [0.00000000e+00]
 [6.00000000e-01]
 [2.68177672e-01]
 [1.70706170e-03]
 [6.00000000e-01]
 [6.00000000e-01]
 [6.00000000e-01]
 [0.00000000e+00]
 [6.00000000e-01]
 [6.00000000e-01]
 [6.00000000e-01]
 [0.00000000e+00]
 [6.00000000e-01]
 [6.00000000e-01]
 [0.00000000e+00]
 [6.00000000e-01]
 [0.00000000e+00]
 [1.71265335e-01]
 [6.00000000e-01]
 [0.00000000e+00]
 [0.00000000e+00]
 [1.78599421e-01]
 [0.00000000e+00]
 [0.00000000e+00]
 [7.77296921e-02]
 [0.00000000e+00]
 [0.00000000e+00]
 [0.00000000e+00]
 [0.00000000e+00]
 [4.87252034e-01]
 [6.00000000e-01]
 [0.00000000e+00]
 [6.00000000e-01]
 [0.00000000e+00]
 [0.00000000e+00]
 [0.00000000e+00]
 [6.00000000e-01]
 [6.00000000e-01]
 [0.00000000e+00]
 [6.00000000e-01]
 [0.00000000e+00]
 [0.00000000e+00]
 [0.00000000e+00]
 [0.00000000e+00]
 [6.00000000e-01]
 [6.00000000e-01]
 [6.00000000e-01]
 [6.00000000e-01]
 [5.31022921e-01]
 [0.00000000e+00]
 [6.00000000e-01]
 [0.00000000e+00]
 [6.00000000e-01]
 [6.00000000e-01]
 [5.04214089e-02]
 [0.00000000e+00]
 [6.00000000e-01]
 [4.49746323e-01]
 [5.94392879e-01]
 [0.00000000e+00]
 [6.00000000e-01]
 [0.00000000e+00]
 [6.00000000e-01]
 [0.00000000e+00]
 [0.00000000e+00]
 [5.98079399e-01]
 [0.00000000e+00]
 [6.00000000e-01]
 [1.91923993e-04]
 [3.64924882e-02]
 [6.00000000e-01]
 [0.00000000e+00]
 [6.00000000e-01]
 [6.00000000e-01]
 [0.00000000e+00]
 [6.00000000e-01]
 [6.00000000e-01]
 [8.11474740e-02]
 [1.56135451e-02]
 [4.32143935e-03]
 [0.00000000e+00]
 [6.00000000e-01]
 [6.00000000e-01]
 [4.76077742e-01]
 [0.00000000e+00]
 [2.61387773e-02]
 [6.00000000e-01]
 [0.00000000e+00]
 [0.00000000e+00]
 [5.25537716e-04]
 [6.00000000e-01]
 [6.38198712e-02]
 [0.00000000e+00]
 [0.00000000e+00]
 [0.00000000e+00]
 [0.00000000e+00]
 [6.00000000e-01]
 [1.10661794e-01]
 [0.00000000e+00]
 [2.49500724e-01]
 [0.00000000e+00]
 [0.00000000e+00]
 [6.00000000e-01]
 [0.00000000e+00]
 [0.00000000e+00]
 [6.00000000e-01]
 [0.00000000e+00]
 [6.00000000e-01]
 [0.00000000e+00]
 [0.00000000e+00]
 [6.00000000e-01]
 [0.00000000e+00]
 [1.62630326e-19]
 [6.00000000e-01]
 [0.00000000e+00]
 [6.00000000e-01]
 [0.00000000e+00]
 [0.00000000e+00]
 [2.21128776e-01]
 [0.00000000e+00]
 [6.00000000e-01]
 [0.00000000e+00]
 [3.53962170e-01]
 [0.00000000e+00]
 [6.00000000e-01]
 [6.00000000e-01]
 [0.00000000e+00]
 [7.25932350e-02]
 [6.00000000e-01]
 [9.53105799e-03]
 [0.00000000e+00]
 [0.00000000e+00]
 [0.00000000e+00]
 [6.00000000e-01]
 [0.00000000e+00]
 [6.00000000e-01]
 [6.00000000e-01]
 [6.00000000e-01]
 [8.64287869e-03]
 [0.00000000e+00]
 [3.86987563e-01]
 [6.00000000e-01]
 [0.00000000e+00]
 [1.43714051e-01]
 [0.00000000e+00]
 [6.00000000e-01]
 [6.00000000e-01]
 [5.18144372e-01]
 [6.00000000e-01]
 [1.13772084e-01]
 [6.00000000e-01]
 [0.00000000e+00]
 [7.95659834e-15]
 [0.00000000e+00]
 [0.00000000e+00]
 [7.68209960e-03]
 [6.00000000e-01]
 [6.00000000e-01]
 [6.00000000e-01]
 [0.00000000e+00]
 [6.00000000e-01]
 [6.00000000e-01]
 [6.00000000e-01]
 [6.00000000e-01]
 [0.00000000e+00]
 [6.00000000e-01]
 [0.00000000e+00]
 [6.00000000e-01]
 [0.00000000e+00]
 [5.93899135e-01]
 [0.00000000e+00]
 [0.00000000e+00]
 [0.00000000e+00]
 [6.00000000e-01]
 [6.00000000e-01]
 [0.00000000e+00]
 [6.00000000e-01]
 [0.00000000e+00]
 [0.00000000e+00]
 [1.38147257e-01]
 [1.48072850e-01]
 [6.00000000e-01]
 [6.00000000e-01]
 [6.00000000e-01]
 [6.00000000e-01]
 [8.76434612e-02]
 [0.00000000e+00]
 [0.00000000e+00]
 [2.89269832e-01]
 [0.00000000e+00]
 [1.05075542e-01]
 [1.45768749e-02]
 [0.00000000e+00]
 [6.00000000e-01]
 [1.34814525e-01]
 [6.00000000e-01]
 [0.00000000e+00]
 [5.49318063e-01]
 [4.05176205e-01]
 [0.00000000e+00]
 [6.00000000e-01]
 [6.00000000e-01]
 [0.00000000e+00]
 [0.00000000e+00]
 [6.00000000e-01]
 [6.00000000e-01]
 [0.00000000e+00]
 [0.00000000e+00]
 [1.69368428e-01]
 [2.91018982e-01]
 [6.00000000e-01]
 [0.00000000e+00]
 [6.00000000e-01]
 [0.00000000e+00]
 [6.00000000e-01]
 [6.00000000e-01]
 [0.00000000e+00]
 [0.00000000e+00]
 [0.00000000e+00]
 [0.00000000e+00]
 [1.27500184e-02]
 [0.00000000e+00]
 [0.00000000e+00]
 [0.00000000e+00]
 [1.87401996e-04]
 [6.30645259e-04]
 [9.29904843e-02]
 [6.00000000e-01]
 [2.21082561e-01]
 [5.91507647e-01]
 [6.00000000e-01]
 [3.63045128e-01]
 [6.00000000e-01]
 [0.00000000e+00]
 [1.77721524e-01]
 [2.83388924e-01]
 [6.00000000e-01]
 [6.00000000e-01]
 [0.00000000e+00]
 [6.00000000e-01]
 [6.00000000e-01]
 [0.00000000e+00]
 [0.00000000e+00]
 [6.00000000e-01]
 [6.00000000e-01]
 [0.00000000e+00]
 [0.00000000e+00]
 [6.00000000e-01]
 [0.00000000e+00]
 [0.00000000e+00]
 [9.78860473e-03]
 [6.00000000e-01]
 [0.00000000e+00]
 [0.00000000e+00]
 [6.00000000e-01]
 [0.00000000e+00]
 [6.54702627e-02]
 [6.00000000e-01]
 [6.00000000e-01]
 [0.00000000e+00]
 [6.00000000e-01]
 [0.00000000e+00]
 [0.00000000e+00]
 [0.00000000e+00]
 [0.00000000e+00]
 [6.00000000e-01]
 [0.00000000e+00]
 [0.00000000e+00]
 [0.00000000e+00]
 [6.00000000e-01]
 [6.00000000e-01]
 [0.00000000e+00]
 [0.00000000e+00]
 [0.00000000e+00]
 [0.00000000e+00]
 [6.00000000e-01]
 [0.00000000e+00]
 [3.14592953e-01]
 [0.00000000e+00]
 [0.00000000e+00]
 [2.65007849e-01]
 [0.00000000e+00]
 [0.00000000e+00]
 [4.41059537e-01]
 [0.00000000e+00]
 [6.00000000e-01]
 [0.00000000e+00]
 [0.00000000e+00]
 [0.00000000e+00]
 [4.37620841e-02]
 [0.00000000e+00]
 [6.00000000e-01]
 [6.00000000e-01]
 [0.00000000e+00]
 [6.00000000e-01]
 [6.00000000e-01]
 [6.00000000e-01]
 [0.00000000e+00]
 [3.77850212e-02]
 [0.00000000e+00]
 [6.00000000e-01]
 [0.00000000e+00]
 [6.00000000e-01]
 [2.74834210e-01]
 [4.06848734e-01]
 [6.00000000e-01]
 [6.00000000e-01]
 [6.00000000e-01]
 [0.00000000e+00]
 [6.00000000e-01]
 [6.00000000e-01]
 [1.02978931e-01]
 [0.00000000e+00]
 [0.00000000e+00]
 [0.00000000e+00]
 [1.71584420e-01]
 [6.00000000e-01]
 [0.00000000e+00]
 [6.00000000e-01]
 [6.00000000e-01]
 [4.72226170e-02]
 [0.00000000e+00]
 [1.75711958e-03]
 [0.00000000e+00]
 [6.00000000e-01]
 [6.00000000e-01]
 [6.00000000e-01]
 [0.00000000e+00]
 [0.00000000e+00]
 [0.00000000e+00]
 [6.00000000e-01]
 [6.00000000e-01]
 [6.00000000e-01]
 [7.64025915e-02]
 [6.00000000e-01]
 [0.00000000e+00]
 [1.26857110e-03]
 [0.00000000e+00]
 [0.00000000e+00]
 [1.11022302e-16]
 [0.00000000e+00]
 [6.00000000e-01]
 [6.00000000e-01]
 [0.00000000e+00]
 [6.00000000e-01]
 [0.00000000e+00]
 [0.00000000e+00]
 [1.54747976e-01]
 [0.00000000e+00]
 [0.00000000e+00]
 [0.00000000e+00]
 [3.60164019e-01]
 [0.00000000e+00]
 [1.53189258e-01]
 [0.00000000e+00]
 [6.00000000e-01]
 [0.00000000e+00]
 [6.00000000e-01]
 [4.75697126e-01]
 [0.00000000e+00]
 [6.00000000e-01]
 [6.67901131e-02]
 [0.00000000e+00]
 [0.00000000e+00]
 [6.00000000e-01]
 [0.00000000e+00]
 [6.00000000e-01]
 [6.00000000e-01]
 [1.06613480e-01]
 [0.00000000e+00]
 [6.00000000e-01]
 [0.00000000e+00]
 [6.00000000e-01]
 [0.00000000e+00]
 [0.00000000e+00]
 [6.00000000e-01]
 [0.00000000e+00]
 [3.65367450e-02]
 [5.83699824e-01]
 [4.64139371e-04]
 [0.00000000e+00]
 [0.00000000e+00]
 [0.00000000e+00]
 [3.08234094e-01]
 [0.00000000e+00]
 [6.00000000e-01]
 [0.00000000e+00]
 [0.00000000e+00]
 [6.00000000e-01]
 [7.23492052e-03]
 [6.00000000e-01]
 [0.00000000e+00]]
 # 训练出的w
 [[-0.9687785267160129], [-1.9996270734827286], [-0.969151453233287], [-0.0003729265172349727], [-0.9680326736814941]]

reference:
Jack-Cherish/Machine-Learning
SVM算法之代码实现

你可能感兴趣的:(Machine,learning)