LeetCode[BFS]----Word Ladder II

Given two words (beginWord and endWord), and a dictionary's word list, find all shortest transformation sequence(s) from beginWord to endWord, such that:

  1. Only one letter can be changed at a time
  2. Each transformed word must exist in the word list. Note that beginWord is not a transformed word.

Note:

  • Return an empty list if there is no such transformation sequence.
  • All words have the same length.
  • All words contain only lowercase alphabetic characters.
  • You may assume no duplicates in the word list.
  • You may assume beginWord and endWord are non-empty and are not the same.

Example 1:

Input:
beginWord = "hit",
endWord = "cog",
wordList = ["hot","dot","dog","lot","log","cog"]

Output:
[
  ["hit","hot","dot","dog","cog"],
  ["hit","hot","lot","log","cog"]
]

Example 2:

Input:
beginWord = "hit"
endWord = "cog"
wordList = ["hot","dot","dog","lot","log"]

Output: []

Explanation: The endWord "cog" is not in wordList, therefore no possible transformation.

分析:

接着上面 word-ladder 题,本题是要在上题的基础上把每一条最短路径打印出来。

这题的关键是如果大于最短路径,我先用了Python map来记录路径,即A->B,C->D这种,再通过dfs深度优先遍历来收集路径。

用dfs的方法能够在迭代结束时得到路径的个数,毕竟有多少条路径能够到达,就可以在此时生成多少条路径,并在回退的过程中把路径加进去。

代码如下:

class Solution:
    def ladderLength(self, beginWord, endWord, wordList):
        """
        :type beginWord: str
        :type endWord: str
        :type wordList: List[str]
        :rtype: int
        """
        wordSet = set(wordList)
        if endWord in wordSet:
            wordSet.remove(endWord)
        else:
            return []

        endWordSet = set([endWord])
        short_path = {}
        is_find = True
        while is_find:
            curWordSet = set()
            for ew in endWordSet:
                short_path[ew] = []
                for i in range(len(beginWord)):
                    for l in 'abcdefghijklmnopqrstuvwxyz':
                        c_w = ew[: i] + l + ew[i + 1:]
                        if c_w in wordSet:
                            short_path[ew].append(c_w)
                            curWordSet.add(c_w)
                        if c_w == beginWord:
                            short_path[ew] = [beginWord]
                            is_find = False
            endWordSet = curWordSet
            wordSet = wordSet - curWordSet
            if is_find and len(endWordSet) == 0:
                return []

        if is_find is False:
            short_path_lst = []
            short_path_lst = self.printPaths(endWord, beginWord, short_path)
            for rp in short_path_lst:
                rp.append(endWord)
            return short_path_lst
        return []

    def printPaths(self, beginWord, endWord, pathDict):
        if beginWord not in pathDict:
            return []
        cur_path = pathDict[beginWord]
        if endWord in cur_path:  # 如果找到了路径,则返回该路径
            return [[endWord]]

        big_res = []
        for p in cur_path:  # 递归遍历map路径
            res = self.printPaths(p, endWord, pathDict)
            for rp in res:
                rp.append(p)
            big_res.extend(res)
        return big_res

 

你可能感兴趣的:(Python,算法之美,LeetCode)