在Window10下基于Anaconda安装Tensorflow以及Keras并基于Spyder进行验证

环境信息

  • Window 10
  • Anaconda3(64-bit)

安装目的

安装Keras,并使用Tensorflow作为其后端。也就是说执行完安装后,Keras和Tensorflow都是可以使用的

安装过程

  1. 以管理员身份运行Anaconda Prompt。

  2. 在默认的base环境中执行安装命令:

    	conda install theano   # keras可以使用theano作为其后端
    	conda install tensorflow
    	conda install keras
    

安装验证

  1. 启动Anaconda Navigator
  2. 在Home中Launch Spyder(要确认当前Environment为base,有多个虚拟环境时,每个虚拟环境下的Spyder分别是独立安装的)
  3. 验证Keras的安装(如下代码来自https://github.com/keras-team/keras/blob/master/examples/mnist_mlp.py)。
  • 代码:
        from __future__ import print_function
        
        import keras
        from keras.datasets import mnist
        from keras.models import Sequential
        from keras.layers import Dense, Dropout
        from keras.optimizers import RMSprop
        
        batch_size = 128
        num_classes = 10
        epochs = 20
        
        # the data, split between train and test sets
        (x_train, y_train), (x_test, y_test) = mnist.load_data()
        
        x_train = x_train.reshape(60000, 784)
        x_test = x_test.reshape(10000, 784)
        x_train = x_train.astype('float32')
        x_test = x_test.astype('float32')
        x_train /= 255
        x_test /= 255
        print(x_train.shape[0], 'train samples')
        print(x_test.shape[0], 'test samples')
        
        # convert class vectors to binary class matrices
        y_train = keras.utils.to_categorical(y_train, num_classes)
        y_test = keras.utils.to_categorical(y_test, num_classes)
        
        model = Sequential()
        model.add(Dense(512, activation='relu', input_shape=(784,)))
        model.add(Dropout(0.2))
        model.add(Dense(512, activation='relu'))
        model.add(Dropout(0.2))
        model.add(Dense(num_classes, activation='softmax'))
        
        model.summary()
        
        model.compile(loss='categorical_crossentropy',
                      optimizer=RMSprop(),
                      metrics=['accuracy'])
        
        history = model.fit(x_train, y_train,
                            batch_size=batch_size,
                            epochs=epochs,
                            verbose=1,
                            validation_data=(x_test, y_test))
        score = model.evaluate(x_test, y_test, verbose=0)
        print('Test loss:', score[0])
        print('Test accuracy:', score[1])
    
    
    上述过程会下载minist数据集,下载失败的话,可以手工下载并将其保存为C:\Users\wht.keras\datasets\mnist.npz
  • 结果查看:
    在Window10下基于Anaconda安装Tensorflow以及Keras并基于Spyder进行验证_第1张图片
  1. 验证Tensorflow的安装。
  • 代码:
    
        from __future__ import print_function
        
        import tensorflow as tf
        x = tf.random.normal([2,784])
        w1 = tf.Variable(tf.random.truncated_normal([784, 256], stddev=0.1))
        b1 = tf.Variable(tf.zeros([256]))
        o1 = tf.matmul(x,w1) + b1 # 线性变换
        o1 = tf.nn.relu(o1) # 激活函数
        
        
        print('w1:', w1)
        print('b1:', b1)
        print('o1:', o1)
    
  • 结果查看:
    在Window10下基于Anaconda安装Tensorflow以及Keras并基于Spyder进行验证_第2张图片

你可能感兴趣的:(机器学习,Tensorflow)