这里我们提出一个神经网络解决异或问题
异或问题出现四个点,此时一条直线无法正确地区分出正负样本
X = np.array([[1,0,0],[1,0,1],[1,1,0],[1,1,1]])
Y = np.array([-1,1,1,-1])
x1 = [0,1]
y1 = [1,0]
x2 = [0,1]
y2 = [0,1]
于是我们引入线性神经网络
线性神经网络解决线性不可分问题
下面给出实现代码:
import numpy as np
import matplotlib.pyplot as plt
X = np.array([[1,0,0,0,0,0],
[1,0,1,0,0,1],
[1,1,0,1,0,0],
[1,1,1,1,1,1]])
Y = np.array([-1,1,1,-1])
W = (np.random.random(6)-0.5)*2
print(W)
#学习率
lr = 0.11
n = 0
o = 0
def update():
global X,Y,W,lr,n
n += 1
o = np.dot(X,W.T)
W_C = lr*((Y-o.T).dot(X))/X.shape[0]
W = W + W_C
def predict(X):
global W
y = np.sign(np.dot(X,W.T))
return y
def calculate(x,root):
a = W[5]
b = W[2]+x*W[4]
c = W[0]+x*W[1]+x*x*W[3]
if root==1:
return (-b+np.sqrt(b*b-4*a*c))/(2*a)
if root==2:
return (-b-np.sqrt(b*b-4*a*c))/(2*a)
for i in range(10000):
update()
#print(W)
#print(n)
#o = np.sign(np.dot(X,W.T))
if(o == Y.T).all():
print('finish')
break
for e in X:
print(predict(e))
x1 = [0,1]
y1 = [1,0]
x2 = [0,1]
y2 = [0,1]
xdata = np.linspace(0,5)
k = -W[1]/W[2]
d = -W[0]/W[2]
plt.figure()
plt.plot(xdata,calculate(xdata,1),'r')
plt.plot(xdata,calculate(xdata,2),'r')
plt.plot(x1,y1,'bo')
plt.plot(x2,y2,'yo')
plt.show()