- AI大模型从0到1记录学习 大模型技术之机器学习 day27-day60
Gsen2819
算法大模型人工智能人工智能学习机器学习
机器学习概述机器学习(MachineLearning,ML)主要研究计算机系统对于特定任务的性能,逐步进行改善的算法和统计模型。通过输入海量训练数据对模型进行训练,使模型掌握数据所蕴含的潜在规律,进而对新输入的数据进行准确的分类或预测。机器学习是一门多领域交叉学科,涉及概率论、统计学、逼近论、凸优化、算法复杂度理论等多门学科。人工智能、机器学习与深度学习人工智能(AI)是计算机科学的一个广泛领域,
- 机器学习与深度学习22-数据预处理
my_q
机器学习与深度学习机器学习深度学习人工智能
目录前文回顾1.常见的数据质量问题2.归一化和标准化3.特征选择和特征提取4.独热编码前文回顾上一篇文章地址:链接1.常见的数据质量问题在数据预处理过程中,常见的数据质量问题包括缺失值、异常值和重复数据。以下是这些问题的详细描述以及处理方法:缺失值:缺失值是指数据表中某些单元格或字段缺乏数值或信息的情况处理方法:删除包含缺失值的行:如果缺失值数量较少,可以考虑删除包含缺失值的行,但这可能导致信息损
- Rust 机器学习
KENYCHEN奉孝
Rustrust机器学习开发语言
Rust机器学习Rust机器学习与深度学习现状Rust在机器学习(ML)和深度学习(DL)领域的生态仍处于早期阶段,但因其高性能、内存安全和并发优势,逐渐吸引开发者探索。以下从工具链、库和实际应用方向展开。机器学习(ML)笔记以下是关于机器学习(MachineLearning,ML)的详细学习集,涵盖核心概念、方法、工具和学习路径:机器学习基础概念机器学习是人工智能的子领域,通过算法让计算机从数据
- 机器学习与深度学习21-信息论
my_q
机器学习与深度学习机器学习深度学习人工智能
目录前文回顾1.信息上的概念2.相对熵是什么3.互信息是什么4.条件熵和条件互信息5.最大熵模型6.信息增益与基尼不纯度前文回顾上一篇文章链接:地址1.信息上的概念信息熵(Entropy)是信息理论中用于度量随机变量不确定性的概念。它表示了对一个随机事件发生的预测的平均困惑程度或信息量。对于一个离散型随机变量X,其信息熵H(X)定义为所有可能取值的负概率加权平均。数学上,可以使用以下公式来计算离散
- 机器学习与深度学习07-随机森林01
my_q
机器学习与深度学习机器学习深度学习随机森林
目录前文回顾1.随机森林的定义2.随机森林中的过拟合3.随机森林VS单一决策树4.随机森林的随机性前文回顾上一篇文章链接:地址1.随机森林的定义随机森林(RandomForest)是一种集成学习算法,用于解决分类和回归问题。它基于决策树(DecisionTrees)构建,并通过组合多个决策树来提高模型的性能和稳定性。随机森林的主要思想是通过随机选择样本和特征来构建多棵决策树,然后综合它们的预测结果
- 机器学习与深度学习20-数学优化
my_q
机器学习与深度学习机器学习深度学习人工智能
目录前文回顾1.梯度下降的基本原理2.什么是损失函数?3.随机梯度下降和小批量梯度下降4.什么是学习率5.优化算法中的收敛性6.常用的数学优化算法前文回顾上一篇文章链接:地址1.梯度下降的基本原理梯度下降(GradientDescent)是一种常用的优化算法,用于对目标函数进行最小化或最大化。其基本原理是通过迭代更新模型参数,沿着目标函数的负梯度方向逐步调整参数值,直到达到局部最优解。在机器学习中
- 医疗风险预测AI模型:机器学习与深度学习方法的深度分析与实践
Allen_Lyb
数智化医院2025人工智能机器学习深度学习
一、技术前沿进展与创新架构医疗风险预测领域正处于技术爆发期,多种人工智能模型正不断突破性能极限。通过对最新研究的系统分析,我们观察到以下几个关键发展方向:深度学习模型的革新应用时间序列建模:在脓毒症相关急性肾损伤(SA-AKI)预测领域,ORAKLE模型采用DynamicDeepHit框架整合长短期记忆网络(LSTM),显著提升了动态预测能力。该模型通过处理患者生命体征、实验室指标等多变量时间序列
- 机器学习与深度学习16-概率论和统计学01
my_q
机器学习与深度学习机器学习深度学习概率论
目录前文回顾1.什么是概率论和统计学2.概率的基本概念3.什么是概率密度函数和累积分布函数4.均值、中位数与众数前文回顾上一篇文章地址:链接1.什么是概率论和统计学概率论和统计学是数学中重要的分支,用于研究随机事件和数据的分布、关联性以及不确定性。概率论是研究随机事件发生的可能性和规律的数学学科。它提供了一套工具和方法来描述和分析随机变量、随机过程以及他们之间的关系。概率论包括概率分布、随机变量、
- JAVA资料,C#资料,人工智能资料,Python资料】全网最全编程学习文档合集
wangjinjin180
javac#人工智能
目录Java编程学习资源Java入门基础面向对象编程(OOP)Java高级特性与框架Java项目实践与开发工具C#编程学习资源C#入门与基础面向对象编程(OOP)在C#中的应用C#开发中的常见库与框架C#项目开发与实践人工智能编程学习资源人工智能基础机器学习与深度学习强化学习与自然语言处理AI开发工具与库Python编程学习资源Python基础与语法Python高级特性与库Python数据科学与人
- 机器学习与深度学习13-K均值聚类
my_q
机器学习与深度学习机器学习深度学习均值算法
目录前文回顾1.K均值聚类定义2.K均值聚类的工作原理3.如何确定K均值聚类的K值4.K均值聚类的优点和局限性5.K均值聚类的常见初始化方法6.K均值聚类和层次聚类的区别与联系前文回顾上一篇文章地址:链接1.K均值聚类定义K均值聚类(K-meansclustering)是一种常用的无监督学习算法,用于将数据集划分为K个不同的簇。该算法通过最小化簇内样本之间的平方误差和最大化簇间的距离来确定簇的位置
- 机器学习与深度学习14-集成学习
目录前文回顾1.集成学习的定义2.集成学习中的多样性3.集成学习中的Bagging和Boosting4.集成学习中常见的基本算法5.什么是随机森林6.AdaBoost算法的工作原理7.如何选择集成学习中的基础学习器或弱分类器8.集成学习中常见的组合策略9.集成学习中袋外误差和交叉验证的作用10.集成学习的优势和局限性前文回顾上一篇文章链接:地址1.集成学习的定义集成学习(EnsembleLearn
- 机器学习与深度学习04-逻辑回归02
my_q
机器学习与深度学习机器学习深度学习逻辑回归
目录前文回顾6.正则化在逻辑回归中的作用7.特征工程是什么8.逻辑回归的预测结果如何9.什么是ROC曲线和AUC值10.如何处理类不平衡问题11.什么是交叉验证前文回顾上一篇文章地址:链接6.正则化在逻辑回归中的作用逻辑回归中,正则化是一种用于控制模型复杂度的技术,它对模型的参数进行约束,以防止过拟合。正则化通过在损失函数中引入额外的正则化项来实现,这些正则化项对参数的大小进⾏惩罚,逻辑回归中常用
- 植被监测新范式!Python驱动机器学习反演NDVI/LAI关键技术解析
梦想的初衷~
生态环境遥感植被python机器学习生态环境监测
在全球气候变化与生态环境监测的重要需求下,植被参数遥感反演作为定量评估植被生理状态、结构特征及生态功能的核心技术,正面临数据复杂度提升、模型精度要求高、多源异构数据融合等挑战。人工智能(AI)技术的快速发展,尤其是机器学习与深度学习算法的突破,为解决这些难题提供了全新路径。AI凭借强大的非线性拟合能力、数据特征自动提取优势及跨模态信息融合潜力,能够高效处理遥感数据中的噪声与不确定性,显著提升植被参
- 阅读宋立恒《AI制胜:机器学习极简入门》第1章:机器学习概述
酒城译痴无心剑
AI-机器学习-深度学习机器学习人工智能自然语言处理
文章目录一、什么是机器学习二、机器学习的流程(一)数据收集(二)数据预处理(三)特征工程(四)模型构建和训练三、机器学习该如何学(一)AI时代首选Python(二)PyCharm可视化编辑器和Anaconda大礼包1、PyCharm可视化编辑器2、Anaconda大礼包(三)掌握算法原理与掌握机器学习软件库同等重要(四)机器学习与深度学习的区别四、机器学分类(一)监督学习(三)无监督学习(三)强化
- 2024最新全流程Python编程、机器学习与深度学习
科研的力量
人工智能ChatGPT机器学习深度学习循环神经网络PyTorch随机森林BP神经网络决策树
近年来,人工智能领域的飞速发展极大地改变了各个行业的面貌。当前最新的技术动态,如大型语言模型和深度学习技术的发展,展示了深度学习和机器学习技术的强大潜力,成为推动创新和提升竞争力的关键。特别是PyTorch,凭借其灵活性和高效性,成为科研人员和工程师的首选工具。一、Python基础知识1、Python环境搭建(Python软件下载、安装与版本选择;PyCharm下载、安装;Python之Hello
- 人工智能、机器学习与深度学习:全面介绍与对比分析
山顶望月川
人工智能机器学习深度学习
文章目录引言1.1技术革命的背景1.2三者的关系概述人工智能(AI)概述2.1人工智能的定义与发展历程2.2人工智能的主要分支2.3人工智能的应用领域2.4人工智能的现状与未来趋势机器学习(ML)详解3.1机器学习的基本概念3.2机器学习的核心算法分类3.3机器学习的工作流程3.4机器学习的优势与局限性深度学习(DL)深入解析4.1深度学习的定义与起源4.2神经网络基础架构4.3主流深度学习模型4
- 东南大学图像处理课程PPT核心要点详解
leniou的牙膏
本文还有配套的精品资源,点击获取简介:图像处理是多领域交叉的学科,主要通过数字计算手段操作图像数据。东南大学的PPT讲义详述图像处理的基础知识与实践方法,涵盖了从图像增强到深度学习应用的各个方面。包括图像基础知识、图像增强、变换、分割、特征提取、复原与重建、编码与压缩,以及机器学习与深度学习在图像处理的应用,还可能包含实际案例分析。1.图像基础知识概览图像的数字化数字图像处理开始于图像的数字化。图
- 人工智能、机器学习与深度学习:概念解析与内在联系
AI糊涂是福
人工智能人工智能机器学习深度学习
人工智能、机器学习与深度学习:概念解析与内在联系一、人工智能(ArtificialIntelligence,AI)(一)人工智能的定义人工智能的定义随着技术发展不断演变。从广义上讲,人工智能是指通过计算机技术实现的、模拟人类智能的理论、方法、技术及应用系统。其核心目标是使机器能够执行通常需要人类智能才能完成的任务,如推理、学习、感知、语言理解、决策等。1956年达特茅斯会议被视为人工智能学科的诞生
- 趣谈Ai各种模型算法及应用
KingDol_MIni
深度学习大数据和机器学习深度学习人工智能
机器学习与深度学习模型选型终极指南:告别选择困难症!大家好!今天,我们来聊一个让很多初学者甚至有经验的开发者都头疼的问题:面对琳琅满目的机器学习和深度学习模型,到底该如何选择?就像走进一家拥有无数工具的五金店,如果你不知道每件工具的用途,很容易就挑花了眼。别担心!这篇博客将带你梳理常见的模型,点亮它们的“技能树”,让你在面对不同任务时,能够胸有成竹地挑选出最合适的“神兵利器”。核心理念:没有万能钥
- 机器学习与深度学习
水花花花花花
人工智能就业实战机器学习深度学习人工智能
目录一、机器学习(一)机器学习的分类1.监督学习2.无监督学习3.强化学习(二)机器学习的应用场景二、深度学习(一)深度学习的核心原理(二)常见的深度学习模型1.卷积神经网络(CNN)2.循环神经网络(RNN)及其变体3.Transformer架构(三)深度学习的应用拓展三、机器学习与深度学习的关系一、机器学习机器学习是一门多领域交叉学科,它涉及计算机科学、统计学、概率论、优化理论等众多领域,致力
- 机器学习 vs 深度学习:深入浅出解析两者的区别
海豹工匠
机器学习深度学习人工智能神经网络卷积神经网络
在当今科技飞速发展的时代,**机器学习(MachineLearning)和深度学习(DeepLearning)**成为了人工智能(AI)领域的热门话题。无论你是技术专家、学生,还是对AI感兴趣的普通读者,理解这两者的区别都是至关重要的。本文将以通俗易懂的方式,深入浅出地解析机器学习与深度学习的区别,帮助你全面掌握这一知识。什么是机器学习?机器学习是人工智能的一个子领域,专注于开发能够从数据中自动学
- 《机器学习与深度学习:开启智能未来的钥匙》
OCR_wintone421
人工智能机器学习深度学习
一、机器学习与深度学习的基础认知在当今数字化时代,机器学习和深度学习作为人工智能领域的核心技术,正以惊人的速度改变着我们的生活和工作方式。机器学习是一门让计算机从数据中自动学习模式和规律,并利用这些模式和规律来进行预测和决策的科学。它通过对大量数据的分析和处理,不断优化自身的性能,从而实现对未知数据的准确预测。深度学习则是机器学习的一个重要分支,它借鉴了人脑神经网络的结构和工作原理,通过构建多层神
- 机器学习与深度学习的区别详解
云端.代码农夫CloudFarmer
机器学习深度学习人工智能
机器学习与深度学习的区别详解在数据科学和人工智能领域,机器学习(MachineLearning,ML)和深度学习(DeepLearning,DL)是两个非常重要的概念。尽管这两个术语常常被提及,并且有时会被混淆,但它们之间有着显著的区别。本文将详细介绍机器学习和深度学习的不同之处,帮助读者更好地理解这两个技术的特点和应用场景。一、基本概念1.机器学习机器学习是一种通过数据训练模型,以便使计算机能够
- 植被参数遥感反演技术革命!AI+Python支持向量机/随机森林/神经网络/CNN/LSTM/迁移学习在植被参数反演中的实战应用与优化
小艳加油
农林生态植被参数反演PythonAI大模型
在全球气候变化与生态环境监测的重要需求下,植被参数遥感反演作为定量评估植被生理状态、结构特征及生态功能的核心技术,正面临诸多挑战。随着遥感技术的发展,数据复杂度不断提升,模型精度的要求也越来越高。同时,多源异构数据的融合成为了一个亟待解决的问题。这些挑战对传统遥感反演方法提出了严峻的考验。人工智能技术为遥感反演带来新机遇幸运的是,人工智能(AI)技术的快速发展,尤其是机器学习与深度学习算法的突破,
- 【计算机视觉】OpenCV : 开源计算机视觉库的全面指南 | 超 详 细
白熊188
计算机视觉计算机视觉opencv开源
OpenCV:开源计算机视觉库的全面指南1.OpenCV项目概览核心特性2.核心模块与技术解析2.1基础图像处理2.2特征检测与匹配2.3目标检测与跟踪2.4机器学习与深度学习3.实战案例:从安装到代码实现3.1环境安装与配置Python安装(推荐)C++安装(Linux)3.2案例1:人脸检测(Haar级联)代码实现参数说明3.3案例2:YOLOv5目标检测步骤1:下载模型权重步骤2:代码实现3
- AI-Python机器学习与深度学习技术在植被参数反演中的核心技术应用
xiao5kou4chang6kai4
生态遥感深度学习人工智能python机器学习遥感反演植被参数生态环境
在全球气候变化与生态环境监测的重要需求下,植被参数遥感反演作为定量评估植被生理状态、结构特征及生态功能的核心技术,正面临数据复杂度提升、模型精度要求高、多源异构数据融合等挑战。人工智能(AI)技术的快速发展,尤其是机器学习与深度学习算法的突破,为解决这些难题提供了全新路径。AI凭借强大的非线性拟合能力、数据特征自动提取优势及跨模态信息融合潜力,能够高效处理遥感数据中的噪声与不确定性,显著提升植被参
- 深入探索 PyTorch:回归与分类模型的全方位解析
扉间798
人工智能pytorch
深入探索PyTorch:回归与分类模型的全方位解析在当今数据驱动的时代,机器学习与深度学习技术正广泛应用于各个领域,助力我们从海量数据中挖掘有价值的信息。而PyTorch作为一款备受青睐的深度学习框架,为开发者们提供了简洁且高效的工具来构建各类智能模型。本文将深入探讨基于PyTorch的线性回归、逻辑回归以及多分类模型,不仅涵盖基础理论与实现步骤,还会涉及模型优化、常见问题剖析等拓展内容,旨在为大
- 机器学习与深度学习到底有什么区别
2401_84048832
程序员机器学习深度学习人工智能
机器学习与深度学习的区别:1、应用场景机器学习在指纹识别、特征物体检测等领域的应用基本达到了商业化的要求。深度学习主要应用于文字识别、人脸技术、语义分析、智能监控等领域。目前在智能硬件、教育、医疗等行业也在快速布局。2、所需数据量机器学习能够适应各种数据量,特别是数据量较小的场景。如果数据量迅速增加,那么深度学习的效果将更加突出,这是因为深度学习算法需要大量数据才能完美理解。3、数据依赖性深度学习
- vue对接deepSeek,实现聊天机器人
开心小老虎
vue3知识点+组件人工智能机器人aideepSeek前端
DeepSeek是杭州深度求索人工智能基础技术研究有限公司推出的AI助手,免费体验与全球领先AI模型的互动交流,于2025年1月15日正式上线。DeepSeek凭借自然语言处理、机器学习与深度学习、大数据分析等核心技术优势,在推理、自然语言理解与生成、图像与视频分析、语音识别与合成、个性化推荐、大数据处理与分析、跨模态学习以及实时交互与响应等八大领域表现出色。它能进行逻辑推理、解决复杂问题,理解和
- 机器学习与深度学习4:数据集处理Dataset,DataLoader,batch_size
爱打代码的小高
深度学习人工智能
深度学习中,我们能看到别人的代码中都有一个继承Dataset类的数据集处理过程,这也是深度学习处理数据集的的基础,下面介绍这个数据集的定义和使用:1、数据集加载1.1通用的定义Bach:表示每次喂给模型的数据Epoch:表示训练一次完整数据集数据的过程解释:当一个数据集的大小为10时,设定batch大小为5,那么这个数据就会分为2份,每份大小为5,依次投入到模型中进行训练。训练完所有数据后,就叫做
- Spring4.1新特性——Spring MVC增强
jinnianshilongnian
spring 4.1
目录
Spring4.1新特性——综述
Spring4.1新特性——Spring核心部分及其他
Spring4.1新特性——Spring缓存框架增强
Spring4.1新特性——异步调用和事件机制的异常处理
Spring4.1新特性——数据库集成测试脚本初始化
Spring4.1新特性——Spring MVC增强
Spring4.1新特性——页面自动化测试框架Spring MVC T
- mysql 性能查询优化
annan211
javasql优化mysql应用服务器
1 时间到底花在哪了?
mysql在执行查询的时候需要执行一系列的子任务,这些子任务包含了整个查询周期最重要的阶段,这其中包含了大量为了
检索数据列到存储引擎的调用以及调用后的数据处理,包括排序、分组等。在完成这些任务的时候,查询需要在不同的地方
花费时间,包括网络、cpu计算、生成统计信息和执行计划、锁等待等。尤其是向底层存储引擎检索数据的调用操作。这些调用需要在内存操
- windows系统配置
cherishLC
windows
删除Hiberfil.sys :使用命令powercfg -h off 关闭休眠功能即可:
http://jingyan.baidu.com/article/f3ad7d0fc0992e09c2345b51.html
类似的还有pagefile.sys
msconfig 配置启动项
shutdown 定时关机
ipconfig 查看网络配置
ipconfig /flushdns
- 人体的排毒时间
Array_06
工作
========================
|| 人体的排毒时间是什么时候?||
========================
转载于:
http://zhidao.baidu.com/link?url=ibaGlicVslAQhVdWWVevU4TMjhiKaNBWCpZ1NS6igCQ78EkNJZFsEjCjl3T5EdXU9SaPg04bh8MbY1bR
- ZooKeeper
cugfy
zookeeper
Zookeeper是一个高性能,分布式的,开源分布式应用协调服务。它提供了简单原始的功能,分布式应用可以基于它实现更高级的服务,比如同步, 配置管理,集群管理,名空间。它被设计为易于编程,使用文件系统目录树作为数据模型。服务端跑在java上,提供java和C的客户端API。 Zookeeper是Google的Chubby一个开源的实现,是高有效和可靠的协同工作系统,Zookeeper能够用来lea
- 网络爬虫的乱码处理
随意而生
爬虫网络
下边简单总结下关于网络爬虫的乱码处理。注意,这里不仅是中文乱码,还包括一些如日文、韩文 、俄文、藏文之类的乱码处理,因为他们的解决方式 是一致的,故在此统一说明。 网络爬虫,有两种选择,一是选择nutch、hetriex,二是自写爬虫,两者在处理乱码时,原理是一致的,但前者处理乱码时,要看懂源码后进行修改才可以,所以要废劲一些;而后者更自由方便,可以在编码处理
- Xcode常用快捷键
张亚雄
xcode
一、总结的常用命令:
隐藏xcode command+h
退出xcode command+q
关闭窗口 command+w
关闭所有窗口 command+option+w
关闭当前
- mongoDB索引操作
adminjun
mongodb索引
一、索引基础: MongoDB的索引几乎与传统的关系型数据库一模一样,这其中也包括一些基本的优化技巧。下面是创建索引的命令: > db.test.ensureIndex({"username":1}) 可以通过下面的名称查看索引是否已经成功建立: &nbs
- 成都软件园实习那些话
aijuans
成都 软件园 实习
无聊之中,翻了一下日志,发现上一篇经历是很久以前的事了,悔过~~
断断续续离开了学校快一年了,习惯了那里一天天的幼稚、成长的环境,到这里有点与世隔绝的感觉。不过还好,那是刚到这里时的想法,现在感觉在这挺好,不管怎么样,最要感谢的还是老师能给这么好的一次催化成长的机会,在这里确实看到了好多好多能想到或想不到的东西。
都说在外面和学校相比最明显的差距就是与人相处比较困难,因为在外面每个人都
- Linux下FTP服务器安装及配置
ayaoxinchao
linuxFTP服务器vsftp
检测是否安装了FTP
[root@localhost ~]# rpm -q vsftpd
如果未安装:package vsftpd is not installed 安装了则显示:vsftpd-2.0.5-28.el5累死的版本信息
安装FTP
运行yum install vsftpd命令,如[root@localhost ~]# yum install vsf
- 使用mongo-java-driver获取文档id和查找文档
BigBird2012
driver
注:本文所有代码都使用的mongo-java-driver实现。
在MongoDB中,一个集合(collection)在概念上就类似我们SQL数据库中的表(Table),这个集合包含了一系列文档(document)。一个DBObject对象表示我们想添加到集合(collection)中的一个文档(document),MongoDB会自动为我们创建的每个文档添加一个id,这个id在
- JSONObject以及json串
bijian1013
jsonJSONObject
一.JAR包简介
要使程序可以运行必须引入JSON-lib包,JSON-lib包同时依赖于以下的JAR包:
1.commons-lang-2.0.jar
2.commons-beanutils-1.7.0.jar
3.commons-collections-3.1.jar
&n
- [Zookeeper学习笔记之三]Zookeeper实例创建和会话建立的异步特性
bit1129
zookeeper
为了说明问题,看个简单的代码,
import org.apache.zookeeper.*;
import java.io.IOException;
import java.util.concurrent.CountDownLatch;
import java.util.concurrent.ThreadLocal
- 【Scala十二】Scala核心六:Trait
bit1129
scala
Traits are a fundamental unit of code reuse in Scala. A trait encapsulates method and field definitions, which can then be reused by mixing them into classes. Unlike class inheritance, in which each c
- weblogic version 10.3破解
ronin47
weblogic
版本:WebLogic Server 10.3
说明:%DOMAIN_HOME%:指WebLogic Server 域(Domain)目录
例如我的做测试的域的根目录 DOMAIN_HOME=D:/Weblogic/Middleware/user_projects/domains/base_domain
1.为了保证操作安全,备份%DOMAIN_HOME%/security/Defa
- 求第n个斐波那契数
BrokenDreams
今天看到群友发的一个问题:写一个小程序打印第n个斐波那契数。
自己试了下,搞了好久。。。基础要加强了。
&nbs
- 读《研磨设计模式》-代码笔记-访问者模式-Visitor
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
import java.util.ArrayList;
import java.util.List;
interface IVisitor {
//第二次分派,Visitor调用Element
void visitConcret
- MatConvNet的excise 3改为网络配置文件形式
cherishLC
matlab
MatConvNet为vlFeat作者写的matlab下的卷积神经网络工具包,可以使用GPU。
主页:
http://www.vlfeat.org/matconvnet/
教程:
http://www.robots.ox.ac.uk/~vgg/practicals/cnn/index.html
注意:需要下载新版的MatConvNet替换掉教程中工具包中的matconvnet:
http
- ZK Timeout再讨论
chenchao051
zookeepertimeouthbase
http://crazyjvm.iteye.com/blog/1693757 文中提到相关超时问题,但是又出现了一个问题,我把min和max都设置成了180000,但是仍然出现了以下的异常信息:
Client session timed out, have not heard from server in 154339ms for sessionid 0x13a3f7732340003
- CASE WHEN 用法介绍
daizj
sqlgroup bycase when
CASE WHEN 用法介绍
1. CASE WHEN 表达式有两种形式
--简单Case函数
CASE sex
WHEN '1' THEN '男'
WHEN '2' THEN '女'
ELSE '其他' END
--Case搜索函数
CASE
WHEN sex = '1' THEN
- PHP技巧汇总:提高PHP性能的53个技巧
dcj3sjt126com
PHP
PHP技巧汇总:提高PHP性能的53个技巧 用单引号代替双引号来包含字符串,这样做会更快一些。因为PHP会在双引号包围的字符串中搜寻变量, 单引号则不会,注意:只有echo能这么做,它是一种可以把多个字符串当作参数的函数译注: PHP手册中说echo是语言结构,不是真正的函数,故把函数加上了双引号)。 1、如果能将类的方法定义成static,就尽量定义成static,它的速度会提升将近4倍
- Yii框架中CGridView的使用方法以及详细示例
dcj3sjt126com
yii
CGridView显示一个数据项的列表中的一个表。
表中的每一行代表一个数据项的数据,和一个列通常代表一个属性的物品(一些列可能对应于复杂的表达式的属性或静态文本)。 CGridView既支持排序和分页的数据项。排序和分页可以在AJAX模式或正常的页面请求。使用CGridView的一个好处是,当用户浏览器禁用JavaScript,排序和分页自动退化普通页面请求和仍然正常运行。
实例代码如下:
- Maven项目打包成可执行Jar文件
dyy_gusi
assembly
Maven项目打包成可执行Jar文件
在使用Maven完成项目以后,如果是需要打包成可执行的Jar文件,我们通过eclipse的导出很麻烦,还得指定入口文件的位置,还得说明依赖的jar包,既然都使用Maven了,很重要的一个目的就是让这些繁琐的操作简单。我们可以通过插件完成这项工作,使用assembly插件。具体使用方式如下:
1、在项目中加入插件的依赖:
<plugin>
- php常见错误
geeksun
PHP
1. kevent() reported that connect() failed (61: Connection refused) while connecting to upstream, client: 127.0.0.1, server: localhost, request: "GET / HTTP/1.1", upstream: "fastc
- 修改linux的用户名
hongtoushizi
linuxchange password
Change Linux Username
更改Linux用户名,需要修改4个系统的文件:
/etc/passwd
/etc/shadow
/etc/group
/etc/gshadow
古老/传统的方法是使用vi去直接修改,但是这有安全隐患(具体可自己搜一下),所以后来改成使用这些命令去代替:
vipw
vipw -s
vigr
vigr -s
具体的操作顺
- 第五章 常用Lua开发库1-redis、mysql、http客户端
jinnianshilongnian
nginxlua
对于开发来说需要有好的生态开发库来辅助我们快速开发,而Lua中也有大多数我们需要的第三方开发库如Redis、Memcached、Mysql、Http客户端、JSON、模板引擎等。
一些常见的Lua库可以在github上搜索,https://github.com/search?utf8=%E2%9C%93&q=lua+resty。
Redis客户端
lua-resty-r
- zkClient 监控机制实现
liyonghui160com
zkClient 监控机制实现
直接使用zk的api实现业务功能比较繁琐。因为要处理session loss,session expire等异常,在发生这些异常后进行重连。又因为ZK的watcher是一次性的,如果要基于wather实现发布/订阅模式,还要自己包装一下,将一次性订阅包装成持久订阅。另外如果要使用抽象级别更高的功能,比如分布式锁,leader选举
- 在Mysql 众多表中查找一个表名或者字段名的 SQL 语句
pda158
mysql
在Mysql 众多表中查找一个表名或者字段名的 SQL 语句:
方法一:SELECT table_name, column_name from information_schema.columns WHERE column_name LIKE 'Name';
方法二:SELECT column_name from information_schema.colum
- 程序员对英语的依赖
Smile.zeng
英语程序猿
1、程序员最基本的技能,至少要能写得出代码,当我们还在为建立类的时候思考用什么单词发牢骚的时候,英语与别人的差距就直接表现出来咯。
2、程序员最起码能认识开发工具里的英语单词,不然怎么知道使用这些开发工具。
3、进阶一点,就是能读懂别人的代码,有利于我们学习人家的思路和技术。
4、写的程序至少能有一定的可读性,至少要人别人能懂吧...
以上一些问题,充分说明了英语对程序猿的重要性。骚年
- Oracle学习笔记(8) 使用PLSQL编写触发器
vipbooks
oraclesql编程活动Access
时间过得真快啊,转眼就到了Oracle学习笔记的最后个章节了,通过前面七章的学习大家应该对Oracle编程有了一定了了解了吧,这东东如果一段时间不用很快就会忘记了,所以我会把自己学习过的东西做好详细的笔记,用到的时候可以随时查找,马上上手!希望这些笔记能对大家有些帮助!
这是第八章的学习笔记,学习完第七章的子程序和包之后