numpy的 solve()

摘自菜鸟教程http://www.runoob.com/numpy/numpy-linear-algebra.html

NumPy 线性代数
NumPy 提供了线性代数函数库 linalg,该库包含了线性代数所需的所有功能,可以看看下面的说明:

函数 描述
dot 两个数组的点积,即元素对应相乘。
vdot 两个向量的点积
inner 两个数组的内积
matmul 两个数组的矩阵积
determinant 数组的行列式
solve 求解线性矩阵方程
inv 计算矩阵的乘法逆矩阵

numpy.linalg.solve()

numpy.linalg.solve() 函数给出了矩阵形式的线性方程的解。

考虑以下线性方程:

x + y + z = 6
2y + 5z = -4
2x + 5y - z = 27

可以使用矩阵表示为:
在这里插入图片描述

如果矩阵成为A、X和B,方程变为:

AX = B

X = A^(-1)B

实例

import numpy as np 
 
a = np.array([[1,1,1],[0,2,5],[2,5,-1]]) 
 
print ('数组 a:')
print (a)
ainv = np.linalg.inv(a) 
 
print ('a 的逆:')
print (ainv)
 
print ('矩阵 b:')
b = np.array([[6],[-4],[27]]) 
print (b)
 
print ('计算:A^(-1)B:')
x = np.linalg.solve(a,b) 
print (x)
# 这就是线性方向 x = 5, y = 3, z = -2 的解

输出结果为:

数组 a:
[[ 1  1  1]
 [ 0  2  5]
 [ 2  5 -1]]
a 的逆:
[[ 1.28571429 -0.28571429 -0.14285714]
 [-0.47619048  0.14285714  0.23809524]
 [ 0.19047619  0.14285714 -0.0952381 ]]
矩阵 b:
[[ 6]
 [-4]
 [27]]
计算:A^(-1)B:
[[ 5.]
 [ 3.]
 [-2.]]

你可能感兴趣的:(numpy的 solve())