Tensorflow2.0学习笔记(一)入门

Tensorflow2.0学习笔记(一)入门_第1张图片

                  目录

1 一个简单的手写数字图片识别程序

2 一个稍微复杂的手写数字图片识别程序

 

1 一个简单的手写数字图片识别程序

import tensorflow as tf
import numpy as np


"""
# 载入并准备好 MNIST 数据集
mnist = tf.keras.datasets.mnist
(x_train, y_train), (x_test, y_test) = mnist.load_data()
"""


def load_mnist(path):
    """加载本地下载好的mnist数据集"""
    f = np.load(path)
    x_train, y_train = f['x_train'], f['y_train']
    x_test, y_test = f['x_test'], f['y_test']
    f.close()
    return (x_train, y_train), (x_test, y_test)


(x_train, y_train), (x_test, y_test) = load_mnist("mnist.npz")
x_train, x_test = x_train / 255.0, x_test / 255.0  # 将样本从整数转换为浮点数

# 利用tf.keras.Sequential容器封装网络层,前一层网络的输出默认作为下一层的输入
model = tf.keras.models.Sequential([
  tf.keras.layers.Flatten(input_shape=(28, 28)),
  tf.keras.layers.Dense(128, activation='relu'),  # 创建一层网络,设置输出节点数为128,激活函数类型为Relu
  tf.keras.layers.Dropout(0.2),  # 在训练中每次更新时, 将输入单元的按比率随机设置为 0, 这有助于防止过拟合
  tf.keras.layers.Dense(10, activation='softmax')])  # Dense层就是所谓的全连接神经网络层


# 为训练选择优化器和损失函数:
model.compile(optimizer='adam',
              loss='sparse_categorical_crossentropy',
              metrics=['accuracy'])

# 训练并验证模型
model.fit(x_train, y_train, epochs=5)

model.evaluate(x_test,  y_test, verbose=2)  # Verbosity mode. 0 = silent, 1 = progress bar, 2 = loss & acc

model.save_weights('weight/my_weights', save_format='tf')  # 保存模型

输出:

一个稍微复杂的手写数字图片识别程序

import tensorflow as tf
from tensorflow.keras.layers import Dense, Flatten, Conv2D
from tensorflow.keras import Model
import numpy as np


# mnist = tf.keras.datasets.mnist
# (x_train, y_train), (x_test, y_test) = mnist.load_data()

def load_mnist(path):
  """加载本地下载好的mnist数据集"""
  f = np.load(path)
  x_train, y_train = f['x_train'], f['y_train']
  x_test, y_test = f['x_test'], f['y_test']
  f.close()
  return (x_train, y_train), (x_test, y_test)


(x_train, y_train), (x_test, y_test) = load_mnist("mnist.npz")
x_train, x_test = x_train / 255.0, x_test / 255.0

# Add a channels dimension
x_train = x_train[..., tf.newaxis]
x_test = x_test[..., tf.newaxis]

# 使用 tf.data 来将数据集切分为 batch 以及混淆数据集:
train_ds = tf.data.Dataset.from_tensor_slices((x_train, y_train)).shuffle(10000).batch(32)
test_ds = tf.data.Dataset.from_tensor_slices((x_test, y_test)).batch(32)


class MyModel(Model):
  def __init__(self):
    super(MyModel, self).__init__()
    self.conv1 = Conv2D(32, 3, activation='relu')
    self.flatten = Flatten()
    self.d1 = Dense(128, activation='relu')
    self.d2 = Dense(10, activation='softmax')

  def call(self, x):
    x = self.conv1(x)
    x = self.flatten(x)
    x = self.d1(x)
    return self.d2(x)

model = MyModel()

# 为训练选择优化器与损失函数:
loss_object = tf.keras.losses.SparseCategoricalCrossentropy()

optimizer = tf.keras.optimizers.Adam()

# 选择衡量指标来度量模型的损失值(loss)和准确率(accuracy)
train_loss = tf.keras.metrics.Mean(name='train_loss')
train_accuracy = tf.keras.metrics.SparseCategoricalAccuracy(name='train_accuracy')

test_loss = tf.keras.metrics.Mean(name='test_loss')
test_accuracy = tf.keras.metrics.SparseCategoricalAccuracy(name='test_accuracy')

# 使用 tf.GradientTape 来训练模型:
@tf.function
def train_step(images, labels):
  with tf.GradientTape() as tape:
    predictions = model(images)
    loss = loss_object(labels, predictions)
  gradients = tape.gradient(loss, model.trainable_variables)
  optimizer.apply_gradients(zip(gradients, model.trainable_variables))

  train_loss(loss)
  train_accuracy(labels, predictions)

# 测试模型:
@tf.function
def test_step(images, labels):
  predictions = model(images)
  t_loss = loss_object(labels, predictions)

  test_loss(t_loss)
  test_accuracy(labels, predictions)

EPOCHS = 5
for epoch in range(EPOCHS):
  # 重置评估指标
  train_loss.reset_states()
  train_accuracy.reset_states()
  test_loss.reset_states()
  test_accuracy.reset_states()

  for images, labels in train_ds:
    train_step(images, labels)

  for test_images, test_labels in test_ds:
    test_step(test_images, test_labels)

  template = 'Epoch {}, Loss: {}, Accuracy: {}, Test Loss: {}, Test Accuracy: {}'
  print(template.format(epoch+1, train_loss.result(), 
                        train_accuracy.result()*100, 
                        test_loss.result(), 
                        test_accuracy.result()*100))
  pass

输出:

 

参考资料:https://tensorflow.google.cn/tutorials/quickstart/beginner

你可能感兴趣的:(Tensorflow2.0)