keras 多输入多输出

from keras.layers import Conv2D, MaxPooling2D, Input, Dense, Flatten, Concatenate
from keras.models import Model

# First, define the vision modules
digit_input = Input(shape=(27, 27, 1))
x = Conv2D(64, (3, 3))(digit_input)
x = Conv2D(64, (3, 3))(x)
x = MaxPooling2D((2, 2))(x)
out = Flatten()(x)

vision_model = Model(digit_input, out)

# Then define the tell-digits-apart model
digit_a = Input(shape=(27, 27, 1))
digit_b = Input(shape=(27, 27, 1))

# The vision model will be shared, weights and all
out_a = vision_model(digit_a)
out_b = vision_model(digit_b)

concatenated = Concatenate()([out_a, out_b])
out = Dense(1, activation='sigmoid')(concatenated)

classification_model = Model([digit_a, digit_b], out)

  最近在进行多张不同类型图片进行特征融合时参考了中文文档的例子。

你可能感兴趣的:(图像处理,Python)