import tensorflow as tf
import numpy as np
import os
from matplotlib import pyplot as plt
from tensorflow.keras.layers import Conv2D,BatchNormalization,Activation,MaxPool2D,Dropout,Flatten,Dense
from tensorflow.keras import Model
np.set_printoptions(threshold=np.inf)
cifar10=tf.keras.datasets.cifar10
(x_train,y_train),(x_test,y_test)=cifar10.load_data()
x_train,x_test=x_train/255.0,x_test/255.0
class VGG16(Model):
def __init__(self):
super(VGG16,self).__init__()
self.c1=Conv2D(filters= 64,kernel_size=(3,3),padding="same")
self.b1=BatchNormalization()
self.a1=Activation("relu")
self.c2=Conv2D(filters= 64,kernel_size=(3,3),padding="same")
self.b2=BatchNormalization()
self.a2=Activation("relu")
self.p2=MaxPool2D(pool_size=(2,2),strides=2 ,padding="same")
self.d2=Dropout(0.2)
self.c3=Conv2D(filters=128,kernel_size=(3,3),padding="same")
self.b3=BatchNormalization()
self.a3=Activation("relu")
self.c4=Conv2D(filters=128,kernel_size=(3,3),padding="same")
self.b4=BatchNormalization()
self.a4=Activation("relu")
self.p4=MaxPool2D(pool_size=(2,2),strides=2 ,padding="same")
self.d4=Dropout(0.2)
self.c5=Conv2D(filters=256,kernel_size=(3,3),padding="same")
self.b5=BatchNormalization()
self.a5=Activation("relu")
self.c6=Conv2D(filters=256,kernel_size=(3,3),padding="same")
self.b6=BatchNormalization()
self.a6=Activation("relu")
self.c7=Conv2D(filters=256,kernel_size=(3,3),padding="same")
self.b7=BatchNormalization()
self.a7=Activation("relu")
self.p7=MaxPool2D(pool_size=(2,2),strides=2 ,padding="same")
self.d7=Dropout(0.2)
self.c8=Conv2D(filters=512,kernel_size=(3,3),padding="same")
self.b8=BatchNormalization()
self.a8=Activation("relu")
self.c9=Conv2D(filters=512,kernel_size=(3,3),padding="same")
self.b9=BatchNormalization()
self.a9=Activation("relu")
self.c10=Conv2D(filters=512,kernel_size=(3,3),padding="same")
self.b10=BatchNormalization()
self.a10=Activation("relu")
self.p10=MaxPool2D(pool_size=(2,2),strides=2 ,padding="same")
self.d10=Dropout(0.2)
self.c11=Conv2D(filters=512,kernel_size=(3,3),padding="same")
self.b11=BatchNormalization()
self.a11=Activation("relu")
self.c12=Conv2D(filters=512,kernel_size=(3,3),padding="same")
self.b12=BatchNormalization()
self.a12=Activation("relu")
self.c13=Conv2D(filters=512,kernel_size=(3,3),padding="same")
self.b13=BatchNormalization()
self.a13=Activation("relu")
self.p13=MaxPool2D(pool_size=(2,2),strides=2 ,padding="same")
self.d13=Dropout(0.2)
self.flatten=Flatten()
self.f1=Dense(512,activation="relu")
self.d1=Dropout(0.2)
self.f2=Dense(512,activation="relu")
self.d2=Dropout(0.2)
self.f3=Dense( 10,activation="softmax")
def call(self,x):
x=self.c1(x)
x=self.b1(x)
x=self.a1(x)
x=self.c2(x)
x=self.b2(x)
x=self.a2(x)
x=self.p2(x)
x=self.d2(x)
x=self.c3(x)
x=self.b3(x)
x=self.a3(x)
x=self.c4(x)
x=self.b4(x)
x=self.a4(x)
x=self.p4(x)
x=self.d4(x)
x=self.c5(x)
x=self.b5(x)
x=self.a5(x)
x=self.c6(x)
x=self.b6(x)
x=self.a6(x)
x=self.c7(x)
x=self.b7(x)
x=self.a7(x)
x=self.p7(x)
x=self.d7(x)
x=self.c8(x)
x=self.b8(x)
x=self.a8(x)
x=self.c9(x)
x=self.b9(x)
x=self.a9(x)
x=self.c10(x)
x=self.b10(x)
x=self.a10(x)
x=self.p10(x)
x=self.d10(x)
x=self.c11(x)
x=self.b11(x)
x=self.a11(x)
x=self.c12(x)
x=self.b12(x)
x=self.a12(x)
x=self.c13(x)
x=self.b13(x)
x=self.a13(x)
x=self.p13(x)
x=self.d13(x)
x=self.flatten(x)
x=self.f1(x)
x=self.d1(x)
x=self.f2(x)
x=self.d2(x)
y=self.f3(x)
return y
model=VGG16()
model.compile(optimizer="adam",
loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=False),
metrics=['sparse_categorical_accuracy'])
checkpoint_save_path = "./checkpoint.VVGNet/VVGNet.ckpt"
if os.path.exists(checkpoint_save_path + '.index'):
print('-------------load the model-----------------')
model.load_weights(checkpoint_save_path)
cp_callback=tf.keras.callbacks.ModelCheckpoint(filepath=checkpoint_save_path,
save_weights_only=True,
save_best_only=True)
history=model.fit(x_train,y_train,batch_size=32,epochs=1,validation_data=(x_test,y_test),validation_freq=1,
callbacks=[cp_callback])
model.summary()
print(model.trainable_variables)
file = open('./weights.VVGNet.txt', 'w')
for v in model.trainable_variables:
file.write(str(v.name) + '\n')
file.write(str(v.shape) + '\n')
file.write(str(v.numpy()) + '\n')
file.close()
acc =history.history['sparse_categorical_accuracy']
val_acc =history.history['val_sparse_categorical_accuracy']
loss =history.history['loss']
val_loss=history.history['val_loss']
plt.subplot(1, 2, 1)
plt.plot(acc, label='Training Accuracy')
plt.plot(val_acc,label='Validation Accuracy')
plt.title('Training and Validation Accuracy')
plt.legend()
plt.subplot(1, 2, 2)
plt.plot(loss, label='Training Loss')
plt.plot(val_loss,label='Validation Loss')
plt.title('Training and Validation Loss')
plt.legend()
plt.show()