import tensorflow as tf
import numpy as np
import os
from matplotlib import pyplot as plt
from tensorflow.keras.layers import Conv2D,BatchNormalization,Activation,MaxPool2D,Dropout,Flatten,Dense
from tensorflow.keras import Model
np.set_printoptions(threshold=np.inf)
cifar10=tf.keras.datasets.cifar10
(x_train,y_train),(x_test,y_test)=cifar10.load_data()
x_train,x_test=x_train/255.0,x_test/255.0
class ResNetBLK(Model):
def __init__(self,filters,strides=1,residual_path=False):
super(ResNetBLK,self).__init__()
self.filters =filters
self.strides =strides
self.residual_path=residual_path
self.c1=Conv2D(filters=filters,kernel_size=(3,3),strides=strides,padding="same",use_bias=False)
self.b1=BatchNormalization()
self.a1=Activation("relu")
self.c2=Conv2D(filters=filters,kernel_size=(3,3),strides=1, padding="same",use_bias=False)
self.b2=BatchNormalization()
if residual_path:
self.down_c1=Conv2D(filters=filters,kernel_size=(1,1),strides=strides,padding="same",use_bias=False)
self.down_b1=BatchNormalization()
self.a2=Activation("relu")
def call(self,inputs):
x=self.c1(inputs)
x=self.b1(x)
x=self.a1(x)
x=self.c2(x)
y=self.b2(x)
if self.residual_path:
residual=self.down_c1(inputs)
residual=self.down_b1(residual)
out=self.a2(y+residual)
return out
class ResNet18(Model):
def __init__(self,block_list,initial_filters=64):
super(ResNet18,self).__init__()
self.num_blocks =len(block_list)
self.block_list =block_list
self.out_filters=initial_filters
self.c1=Conv2D(self.out_filters,(3,3),strides=1,padding="same",use_bias=False,kernel_initializer="he_normal")
self.b1=tf.keras.layers.BatchNormalization()
self.a1=Activation("relu")
self.blocks=tf.keras.models.Sequential()
for block_id in range(len(block_list)):
for layer_id in range(block_list[block_id]):
if block_id !=0 and layer_id ==0:
block=ResNetBLK(self.out_filters,strides=2,residual_path=True)
else:
block=ResNetBLK(self.out_filters,residual_path=False)
self.blocks.add(block)
self.out_filters *=2
self.p1=tf.keras.layers.GlobalAveragePooling2D()
self.f1=tf.keras.layers.Dense(10)
def call(self,inputs):
x=self.c1(inputs)
x=self.b1(x)
x=self.a1(x)
x=self.blocks(x)
x=self.p1(x)
y=self.f1(x)
return y
model=ResNet18([2,2,2,2])
model.compile(optimizer="adam",
loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=False),
metrics=['sparse_categorical_accuracy'])
checkpoint_save_path = "./checkpoint.ResNet/ResNet.ckpt"
if os.path.exists(checkpoint_save_path + '.index'):
print('-------------load the model-----------------')
model.load_weights(checkpoint_save_path)
cp_callback=tf.keras.callbacks.ModelCheckpoint(filepath=checkpoint_save_path,
save_weights_only=True,
save_best_only=True)
history=model.fit(x_train,y_train,batch_size=32,epochs=1,validation_data=(x_test,y_test),validation_freq=1,
callbacks=[cp_callback])
model.summary()
print(model.trainable_variables)
file = open('./weights.ResNet.txt', 'w')
for v in model.trainable_variables:
file.write(str(v.name) + '\n')
file.write(str(v.shape) + '\n')
file.write(str(v.numpy()) + '\n')
file.close()
acc =history.history['sparse_categorical_accuracy']
val_acc =history.history['val_sparse_categorical_accuracy']
loss =history.history['loss']
val_loss=history.history['val_loss']
plt.subplot(1, 2, 1)
plt.plot(acc, label='Training Accuracy')
plt.plot(val_acc,label='Validation Accuracy')
plt.title('Training and Validation Accuracy')
plt.legend()
plt.subplot(1, 2, 2)
plt.plot(loss, label='Training Loss')
plt.plot(val_loss,label='Validation Loss')
plt.title('Training and Validation Loss')
plt.legend()
plt.show()