下面我们从源码中跟追上面的流程
入口是org.apache.spark.executor.Executor.TaskRunner#run
在上一篇中,我们最后一步是把创建的线程(TaskRunner)放入线程中执行,这里
继续分析接下里的步骤
override def run() {
val deserializeStartTime = System.currentTimeMillis()
Thread.currentThread.setContextClassLoader(replClassLoader)
val ser = env.closureSerializer.newInstance()
logInfo(s"Running $taskName (TID $taskId)")
execBackend.statusUpdate(taskId, TaskState.RUNNING, EMPTY_BYTE_BUFFER)
var taskStart: Long = 0
startGCTime = gcTime
try {
//对序列化的task数据进行反序列化
val (taskFiles, taskJars, taskBytes) = Task.deserializeWithDependencies(serializedTask)
//通过网络通信,将需要的文件、资源、jar拷贝过来
updateDependencies(taskFiles, taskJars)
//通过正式的反序列化操作,将整个task的数据集反序列化回来
task = ser.deserialize[Task[Any]](taskBytes, Thread.currentThread.getContextClassLoader)
// If this task has been killed before we deserialized it, let's quit now. Otherwise,
// continue executing the task.
if (killed) {
// Throw an exception rather than returning, because returning within a try{} block
// causes a NonLocalReturnControl exception to be thrown. The NonLocalReturnControl
// exception will be caught by the catch block, leading to an incorrect ExceptionFailure
// for the task.
throw new TaskKilledException
}
attemptedTask = Some(task)
logDebug("Task " + taskId + "'s epoch is " + task.epoch)
env.mapOutputTracker.updateEpoch(task.epoch)
// Run the actual task and measure its runtime.
//计算出task开始的
taskStart = System.currentTimeMillis()
//最关键的地方是这里,执行task的run()方法
//这里的value,对于ShuffleMapTask来说,就是MapStatus,里面封装了ShuffleMaoTask计算的数据,输出的位置
//那么就会去联系MapOutputTracker,来获取上一个ShuffleMapTask的输出位置,然后通过网络拉取数据
//ResultTask也是一样
val value = task.run(taskAttemptId = taskId, attemptNumber = attemptNumber)
//计算出task的结束时间
val taskFinish = System.currentTimeMillis()
// If the task has been killed, let's fail it.
if (task.killed) {
throw new TaskKilledException
}
//这个,其实就是会MapStatus进行了各种序列化和封装,后面发送给Driver(通过网络)
val resultSer = env.serializer.newInstance()
val beforeSerialization = System.currentTimeMillis()
val valueBytes = resultSer.serialize(value)
val afterSerialization = System.currentTimeMillis()
for (m <- task.metrics) {
m.setExecutorDeserializeTime(taskStart - deserializeStartTime)
m.setExecutorRunTime(taskFinish - taskStart)
m.setJvmGCTime(gcTime - startGCTime)
m.setResultSerializationTime(afterSerialization - beforeSerialization)
}
val accumUpdates = Accumulators.values
val directResult = new DirectTaskResult(valueBytes, accumUpdates, task.metrics.orNull)
val serializedDirectResult = ser.serialize(directResult)
val resultSize = serializedDirectResult.limit
// directSend = sending directly back to the driver
val serializedResult = {
if (maxResultSize > 0 && resultSize > maxResultSize) {
logWarning(s"Finished $taskName (TID $taskId). Result is larger than maxResultSize " +
s"(${Utils.bytesToString(resultSize)} > ${Utils.bytesToString(maxResultSize)}), " +
s"dropping it.")
ser.serialize(new IndirectTaskResult[Any](TaskResultBlockId(taskId), resultSize))
} else if (resultSize >= akkaFrameSize - AkkaUtils.reservedSizeBytes) {
val blockId = TaskResultBlockId(taskId)
env.blockManager.putBytes(
blockId, serializedDirectResult, StorageLevel.MEMORY_AND_DISK_SER)
logInfo(
s"Finished $taskName (TID $taskId). $resultSize bytes result sent via BlockManager)")
ser.serialize(new IndirectTaskResult[Any](blockId, resultSize))
} else {
logInfo(s"Finished $taskName (TID $taskId). $resultSize bytes result sent to driver")
serializedDirectResult
}
}
//这里是调用了Executor所在的CoarseGrainedExecutorBackend的statusUptate()方法,见后面
execBackend.statusUpdate(taskId, TaskState.FINISHED, serializedResult)
} catch {
case ffe: FetchFailedException => {
val reason = ffe.toTaskEndReason
execBackend.statusUpdate(taskId, TaskState.FAILED, ser.serialize(reason))
}
case _: TaskKilledException | _: InterruptedException if task.killed => {
logInfo(s"Executor killed $taskName (TID $taskId)")
execBackend.statusUpdate(taskId, TaskState.KILLED, ser.serialize(TaskKilled))
}
case cDE: CommitDeniedException => {
val reason = cDE.toTaskEndReason
execBackend.statusUpdate(taskId, TaskState.FAILED, ser.serialize(reason))
}
case t: Throwable => {
// Attempt to exit cleanly by informing the driver of our failure.
// If anything goes wrong (or this was a fatal exception), we will delegate to
// the default uncaught exception handler, which will terminate the Executor.
logError(s"Exception in $taskName (TID $taskId)", t)
val serviceTime = System.currentTimeMillis() - taskStart
val metrics = attemptedTask.flatMap(t => t.metrics)
for (m <- metrics) {
m.setExecutorRunTime(serviceTime)
m.setJvmGCTime(gcTime - startGCTime)
}
val reason = new ExceptionFailure(t, metrics)
execBackend.statusUpdate(taskId, TaskState.FAILED, ser.serialize(reason))
// Don't forcibly exit unless the exception was inherently fatal, to avoid
// stopping other tasks unnecessarily.
if (Utils.isFatalError(t)) {
SparkUncaughtExceptionHandler.uncaughtException(t)
}
}
} finally {
// Release memory used by this thread for shuffles
env.shuffleMemoryManager.releaseMemoryForThisThread()
// Release memory used by this thread for unrolling blocks
env.blockManager.memoryStore.releaseUnrollMemoryForThisThread()
// Release memory used by this thread for accumulators
Accumulators.clear()
runningTasks.remove(taskId)
}
}
org.apache.spark.scheduler.Task#run
final def run(taskAttemptId: Long, attemptNumber: Int): T = {
//创建一个TaskContext,就是task的执行上下文,里面记录了task执行的一些全局性的数据
//比如,task重试了几次,task属于哪个stage,task要处理的是rdd的哪个partition等
context = new TaskContextImpl(stageId = stageId, partitionId = partitionId,
taskAttemptId = taskAttemptId, attemptNumber = attemptNumber, runningLocally = false)
TaskContextHelper.setTaskContext(context)
context.taskMetrics.setHostname(Utils.localHostName())
taskThread = Thread.currentThread()
if (_killed) {
kill(interruptThread = false)
}
try {
//调用抽象方法runTask()
//Task的子类只有ShuffleMapTask和ResultTask,所以,这里是调用这两个的runTask()方法
runTask(context)
} finally {
context.markTaskCompleted()
TaskContextHelper.unset()
}
}
org.apache.spark.scheduler.ShuffleMapTask:一个ShuffleMapTask会将一个RDD的元素,切分为多个bucket,基于一个在ShuffleDependency中指定的partitioner,默认是hashPartitioner;ShufflerMapTask的runTask()方法有MapStatus返回值
override def runTask(context: TaskContext): MapStatus = {
// Deserialize the RDD using the broadcast variable.
//对task要处理的rdd相关的数据,做一些反序列化操作
//这个rdd,是通过broadcast variable拿到的,
//多个task运行在多个executor中,都是并行运行,或者并发运行的,可能都不再一个地方,但是一个stage的task,
//其实要处理的rdd是一样的,那么这个task就通过broadcast variable直接拿到自己要处理的那个rdd数据
val ser = SparkEnv.get.closureSerializer.newInstance()
val (rdd, dep) = ser.deserialize[(RDD[_], ShuffleDependency[_, _, _])](
ByteBuffer.wrap(taskBinary.value), Thread.currentThread.getContextClassLoader)
metrics = Some(context.taskMetrics)
var writer: ShuffleWriter[Any, Any] = null
try {
//获取ShuffleManager
//从ShuffleManager中获取ShuffleWriter
val manager = SparkEnv.get.shuffleManager
writer = manager.getWriter[Any, Any](dep.shuffleHandle, partitionId, context)
//最重要的就是这里(rdd.iterator)
//首先,调用rdd的iterator()方法,并且传入当前task要处理哪个partition
//核心的逻辑就在rdd的iterator()方法中,在这里,实现了针对rdd的某个partition,执行我们定义的算子,函数
//返回的数据,是通过ShuffleWriter,经过HashPartitioner进行分区之后,写入自己对应的分区bucket
writer.write(rdd.iterator(partition, context).asInstanceOf[Iterator[_ <: Product2[Any, Any]]])
//最后,返回结果mapStatus
//MapStatus里面封装了ShuffleMapTask计算后的数据,存储在哪里,其实就是BlockManager相关的信息
//BlockManager,是spark底层的内存数据,磁盘数据管理的组件
return writer.stop(success = true).get
} catch {
case e: Exception =>
try {
if (writer != null) {
writer.stop(success = false)
}
} catch {
case e: Exception =>
log.debug("Could not stop writer", e)
}
throw e
}
}
org.apache.spark.rdd.RDD#iterator->org.apache.spark.rdd.RDD#computeOrReadCheckpoint——>
org.apache.spark.rdd.MapPartitionsRDD#compute
//compute就是针对RDD中某个partition执行我们给这个RDD定义的算子和函数
//这个f,可以理解成我们自己定义的算子和函数,但是spark内部进行了封装,还实现了一些其他的逻辑
//调用到这里为止,其实就是在针对rdd的partition,执行自定义的计算操作,并返回新的rdd的Partition的数据
override def compute(split: Partition, context: TaskContext) =
f(context, split.index, firstParent[T].iterator(split, context))
org.apache.spark.executor.CoarseGrainedExecutorBackend#statusUpdate
//这里会发送StatusUptate消息,给SparkDeploySchedulerBackend
override def statusUpdate(taskId: Long, state: TaskState, data: ByteBuffer) {
driver ! StatusUpdate(executorId, taskId, state, data)
}
org.apache.spark.scheduler.cluster.CoarseGrainedClusterMessages.StatusUpdate
SparkDeploySchedulerBackend的父类是CoarseGrainedSchedulerBackend
//处理task执行结束的事件
case StatusUpdate(executorId, taskId, state, data) =>
//调用TaskSchedulerImpl的statusUpdata方法
scheduler.statusUpdate(taskId, state, data.value)
if (TaskState.isFinished(state)) {
executorDataMap.get(executorId) match {
case Some(executorInfo) =>
executorInfo.freeCores += scheduler.CPUS_PER_TASK
makeOffers(executorId)
case None =>
// Ignoring the update since we don't know about the executor.
logWarning(s"Ignored task status update ($taskId state $state) " +
"from unknown executor $sender with ID $executorId")
}
}
org.apache.spark.scheduler.TaskSchedulerImpl#statusUpdate
def statusUpdate(tid: Long, state: TaskState, serializedData: ByteBuffer) {
var failedExecutor: Option[String] = None
synchronized {
try {
//如果task 是 lost了,
if (state == TaskState.LOST && taskIdToExecutorId.contains(tid)) {
// We lost this entire executor, so remember that it's gone
//这里就会移除executor,将它加入失败队列
val execId = taskIdToExecutorId(tid)
if (activeExecutorIds.contains(execId)) {
removeExecutor(execId)
failedExecutor = Some(execId)
}
}
taskIdToTaskSetId.get(tid) match {
//获取对应的taskSet
case Some(taskSetId) =>
//如果task结束了,从内存缓存中移除
if (TaskState.isFinished(state)) {
taskIdToTaskSetId.remove(tid)
taskIdToExecutorId.remove(tid)
}
//如果正常结束,那么也做相应的处理
activeTaskSets.get(taskSetId).foreach { taskSet =>
if (state == TaskState.FINISHED) {
taskSet.removeRunningTask(tid)
taskResultGetter.enqueueSuccessfulTask(taskSet, tid, serializedData)
} else if (Set(TaskState.FAILED, TaskState.KILLED, TaskState.LOST).contains(state)) {
taskSet.removeRunningTask(tid)
taskResultGetter.enqueueFailedTask(taskSet, tid, state, serializedData)
}
}
case None =>
logError(
("Ignoring update with state %s for TID %s because its task set is gone (this is " +
"likely the result of receiving duplicate task finished status updates)")
.format(state, tid))
}
} catch {
case e: Exception => logError("Exception in statusUpdate", e)
}
}
// Update the DAGScheduler without holding a lock on this, since that can deadlock
if (failedExecutor.isDefined) {
dagScheduler.executorLost(failedExecutor.get)
backend.reviveOffers()
}
}
接下里分析org.apache.spark.scheduler.ResultTask#runTask
override def runTask(context: TaskContext): U = {
// Deserialize the RDD and the func using the broadcast variables.
//进行了基本的反序列化
val ser = SparkEnv.get.closureSerializer.newInstance()
val (rdd, func) = ser.deserialize[(RDD[T], (TaskContext, Iterator[T]) => U)](
ByteBuffer.wrap(taskBinary.value), Thread.currentThread.getContextClassLoader)
metrics = Some(context.taskMetrics)
//通过rdd的iterator,执行我们定义的算子和函数
func(context, rdd.iterator(partition, context))
}