deepspeech 代码之解码

Decoder


  在完成模型搭建之后先简单总结一下deepspeech所用的训练参数和模型选择

  1. Input 声学特征选择 归一化后的傅里叶变换 类似mel
  2. DataLoader 选用BucketingSampler
  3. model conv1做特征提取 多重bn biGRU*5 FC
  4. optimizer & loss momentum SGD & warpctc_loss & LR /=1.1 & clip_master_grads
  5. eval WER & CER
  6. decoder BeamSearch & Greedy

1. eval

  1. WER
    关于Levenshtein 可以参考 https://www.jb51.net/article/98449.htm 是python用于计算文本相似度的一种算法
    编辑距离(Edit Distance),又称Levenshtein距离,是指两个字串之间,由一个转成另一个所需的最少编辑操作次数。编辑操作包括将一个字符替换成另一个字符,插入一个字符,删除一个字符。一般来说,编辑距离越小,两个串的相似度越大。

Levenshtein.distance(str1, str2)
计算编辑距离(也称Levenshtein距离)。是描述由一个字串转化成另一个字串最少的操作次数,在其中的操作包括插入、删除、替换。算法实现:动态规划。
Levenshtein.hamming(str1, str2)
计算汉明距离。要求str1和str2必须长度一致。是描述两个等长字串之间对应位置上不同字符的个数。

import Levenshtein as Lev
def wer(self, s1, s2):
        """
        Computes the Word Error Rate, defined as the edit distance between the
        two provided sentences after tokenizing to words.
        Arguments:
            s1 (string): space-separated sentence
            s2 (string): space-separated sentence
        """

        # build mapping of words to integers
        b = set(s1.split() + s2.split())
        word2char = dict(zip(b, range(len(b))))

        # map the words to a char array (Levenshtein packages only accepts
        # strings)
        w1 = [chr(word2char[w]) for w in s1.split()]
        w2 = [chr(word2char[w]) for w in s2.split()]

        return Lev.distance(''.join(w1), ''.join(w2))
  1. CER
def cer(self, s1, s2):
        """
        Computes the Character Error Rate, defined as the edit distance.
        Arguments:
            s1 (string): space-separated sentence
            s2 (string): space-separated sentence
        """
        s1, s2, = s1.replace(' ', ''), s2.replace(' ', '')
        return Lev.distance(s1, s2)

2. decoder

decoded_output, _ = decoder.decode(out, output_sizes)
target_strings = decoder.convert_to_strings(split_targets)
wer, cer = 0, 0
for x in range(len(target_strings)):
    transcript, reference = decoded_output[x][0], target_strings[x][0]
    wer += decoder.wer(transcript, reference) / float(len(reference.split()))
    cer += decoder.cer(transcript, reference) / float(len(reference))
total_cer += cer
total_wer += wer
del out
  1. Greedy
class GreedyDecoder(Decoder):
    def __init__(self, labels, blank_index=0):
        super(GreedyDecoder, self).__init__(labels, blank_index)

    def convert_to_strings(self, sequences, sizes=None, remove_repetitions=False, return_offsets=False):
        """Given a list of numeric sequences, returns the corresponding strings"""
        strings = []
        offsets = [] if return_offsets else None
        for x in xrange(len(sequences)):
            seq_len = sizes[x] if sizes is not None else len(sequences[x])
            string, string_offsets = self.process_string(sequences[x], seq_len, remove_repetitions)
            strings.append([string])  # We only return one path
            if return_offsets:
                offsets.append([string_offsets])
        if return_offsets:
            return strings, offsets
        else:
            return strings

    def process_string(self, sequence, size, remove_repetitions=False):
        string = ''
        offsets = []
        for i in range(size):
            char = self.int_to_char[sequence[i].item()]
            if char != self.int_to_char[self.blank_index]:
                # if this char is a repetition and remove_repetitions=true, then skip
                if remove_repetitions and i != 0 and char == self.int_to_char[sequence[i - 1].item()]:
                    pass
                elif char == self.labels[self.space_index]:
                    string += ' '
                    offsets.append(i)
                else:
                    string = string + char
                    offsets.append(i)
        return string, torch.tensor(offsets, dtype=torch.int)

    def decode(self, probs, sizes=None):
        """
        Returns the argmax decoding given the probability matrix. Removes
        repeated elements in the sequence, as well as blanks.
        Arguments:
            probs: Tensor of character probabilities from the network. Expected shape of batch x seq_length x output_dim
            sizes(optional): Size of each sequence in the mini-batch
        Returns:
            strings: sequences of the model's best guess for the transcription on inputs
            offsets: time step per character predicted
        """
        _, max_probs = torch.max(probs, 2)
        strings, offsets = self.convert_to_strings(max_probs.view(max_probs.size(0), max_probs.size(1)), sizes,
                                                   remove_repetitions=True, return_offsets=True)
        return strings, offsets
  1. BeamSearch
class BeamCTCDecoder(Decoder):
    def __init__(self, labels, lm_path=None, alpha=0, beta=0, cutoff_top_n=40, cutoff_prob=1.0, beam_width=100,
                 num_processes=4, blank_index=0):
        super(BeamCTCDecoder, self).__init__(labels)
        try:
            from ctcdecode import CTCBeamDecoder
        except ImportError:
            raise ImportError("BeamCTCDecoder requires paddledecoder package.")
        self._decoder = CTCBeamDecoder(labels, lm_path, alpha, beta, cutoff_top_n, cutoff_prob, beam_width,
                                       num_processes, blank_index)

    def convert_to_strings(self, out, seq_len):
        results = []
        for b, batch in enumerate(out):
            utterances = []
            for p, utt in enumerate(batch):
                size = seq_len[b][p]
                if size > 0:
                    transcript = ''.join(map(lambda x: self.int_to_char[x.item()], utt[0:size]))
                else:
                    transcript = ''
                utterances.append(transcript)
            results.append(utterances)
        return results

    def convert_tensor(self, offsets, sizes):
        results = []
        for b, batch in enumerate(offsets):
            utterances = []
            for p, utt in enumerate(batch):
                size = sizes[b][p]
                if sizes[b][p] > 0:
                    utterances.append(utt[0:size])
                else:
                    utterances.append(torch.tensor([], dtype=torch.int))
            results.append(utterances)
        return results

    def decode(self, probs, sizes=None):
        """
        Decodes probability output using ctcdecode package.
        Arguments:
            probs: Tensor of character probabilities, where probs[c,t]
                            is the probability of character c at time t
            sizes: Size of each sequence in the mini-batch
        Returns:
            string: sequences of the model's best guess for the transcription
        """
        probs = probs.cpu()
        out, scores, offsets, seq_lens = self._decoder.decode(probs, sizes)

        strings = self.convert_to_strings(out, seq_lens)
        offsets = self.convert_tensor(offsets, seq_lens)
        return strings, offsets

你可能感兴趣的:(语音识别)