pytorch:DCGAN生成动漫头像

动漫头像数据集下载地址:动漫头像数据集_百度云连接,DCGAN论文下载地址: https://arxiv.org/abs/1511.06434

数据集里面的图片是这个样子的:

pytorch:DCGAN生成动漫头像_第1张图片

这是DCGAN的主要改进地方:

pytorch:DCGAN生成动漫头像_第2张图片

下面是所有代码:

第一个模块:

import torch
import torch.nn as nn
import numpy as np
import torch.nn.init as init
import data_helper
from torchvision import transforms

trans = transforms.Compose(
    [
        transforms.ToTensor(),
        transforms.Normalize((.5, .5, .5), (.5, .5, .5))
    ]
)
G_LR = 0.0002
D_LR = 0.0002
BATCHSIZE = 50
EPOCHES = 3000

def init_ws_bs(m):
    if isinstance(m, nn.ConvTranspose2d):
        init.normal_(m.weight.data, std=0.2)
        init.normal_(m.bias.data, std=0.2)


class Generator(nn.Module):
    def __init__(self):
        super(Generator, self).__init__()
        self.deconv1 = nn.Sequential(
            nn.ConvTranspose2d(  # stride(input_w-1)+k-2*Padding
                in_channels=100,
                out_channels=64 * 8,
                kernel_size=4,
                stride=1,
                padding=0,
                bias=False,
            ),
            nn.BatchNorm2d(64 * 8),
            nn.ReLU(inplace=True),
        )
        self.deconv2 = nn.Sequential(
            nn.ConvTranspose2d(  # stride(input_w-1)+k-2*Padding
                in_channels=64 * 8,
                out_channels=64 * 4,
                kernel_size=4,
                stride=2,
                padding=1,
                bias=False,
            ),
            nn.BatchNorm2d(64 * 4),
            nn.ReLU(inplace=True),
        )
        self.deconv3 = nn.Sequential(
            nn.ConvTranspose2d(  # stride(input_w-1)+k-2*Padding
                in_channels=64 * 4,
                out_channels=64 * 2,
                kernel_size=4,
                stride=2,
                padding=1,
                bias=False,
            ),
            nn.BatchNorm2d(64 * 2),
            nn.ReLU(inplace=True),
        )
        self.deconv4 = nn.Sequential(
            nn.ConvTranspose2d(  # stride(input_w-1)+k-2*Padding
                in_channels=64 * 2,
                out_channels=64 * 1,
                kernel_size=4,
                stride=2,
                padding=1,
                bias=False,
            ),
            nn.BatchNorm2d(64),
            nn.ReLU(inplace=True),
        )
        self.deconv5 = nn.Sequential(
            nn.ConvTranspose2d(64, 3, 5, 3, 1, bias=False),
            nn.Tanh(),
        )

    def forward(self, x):
        x = self.deconv1(x)
        x = self.deconv2(x)
        x = self.deconv3(x)
        x = self.deconv4(x)
        x = self.deconv5(x)
        return x


class Discriminator(nn.Module):
    def __init__(self):
        super(Discriminator, self).__init__()
        self.conv1 = nn.Sequential(
            nn.Conv2d(  # batchsize,3,96,96
                in_channels=3,
                out_channels=64,
                kernel_size=5,
                padding=1,
                stride=3,
                bias=False,
            ),
            nn.BatchNorm2d(64),
            nn.LeakyReLU(.2, inplace=True),

        )
        self.conv2 = nn.Sequential(
            nn.Conv2d(64, 64 * 2, 4, 2, 1, bias=False, ),  # batchsize,16,32,32
            nn.BatchNorm2d(64 * 2),
            nn.LeakyReLU(.2, inplace=True),

        )
        self.conv3 = nn.Sequential(
            nn.Conv2d(64 * 2, 64 * 4, 4, 2, 1, bias=False),
            nn.BatchNorm2d(64 * 4),
            nn.LeakyReLU(.2, inplace=True),

        )
        self.conv4 = nn.Sequential(
            nn.Conv2d(64 * 4, 64 * 8, 4, 2, 1, bias=False),
            nn.BatchNorm2d(64 * 8),
            nn.LeakyReLU(.2, inplace=True),

        )
        self.output = nn.Sequential(
            nn.Conv2d(64 * 8, 1, 4, 1, 0, bias=False),
            nn.Sigmoid()  #
        )

    def forward(self, x):
        x = self.conv1(x)
        x = self.conv2(x)
        x = self.conv3(x)
        x = self.conv4(x)
        x = self.output(x)
        return x


g = Generator().cuda()
d = Discriminator().cuda()

init_ws_bs(g), init_ws_bs(d)

g_optimizer = torch.optim.Adam(g.parameters(), betas=(.5, 0.999), lr=G_LR)
d_optimizer = torch.optim.Adam(d.parameters(), betas=(.5, 0.999), lr=D_LR)

g_loss_func = nn.BCELoss()
d_loss_func = nn.BCELoss()

label_real = torch.ones(BATCHSIZE).cuda()
label_fake = torch.zeros(BATCHSIZE).cuda()

real_img = data_helper.get_imgs()


for epoch in range(EPOCHES):
    np.random.shuffle(real_img)
    count = 0
    batch_imgs = []
    for i in range(len(real_img)):
        count = count + 1
        batch_imgs.append(trans(real_img[i]).numpy())  # tensor类型#这里经过trans操作通道维度从第四个到第二个了

        if count == BATCHSIZE:
            count = 0

            batch_real = torch.Tensor(batch_imgs).cuda()
            batch_imgs.clear()
            d_optimizer.zero_grad()
            pre_real = d(batch_real).squeeze()
            d_real_loss = d_loss_func(pre_real, label_real)
            d_real_loss.backward()

            batch_fake = torch.randn(BATCHSIZE, 100, 1, 1).cuda()
            img_fake = g(batch_fake).detach()
            pre_fake = d(img_fake).squeeze()
            d_fake_loss = d_loss_func(pre_fake, label_fake)
            d_fake_loss.backward()

            d_optimizer.step()

            g_optimizer.zero_grad()
            batch_fake = torch.randn(BATCHSIZE, 100, 1, 1).cuda()
            img_fake = g(batch_fake)
            pre_fake = d(img_fake).squeeze()
            g_loss = g_loss_func(pre_fake, label_real)
            g_loss.backward()
            g_optimizer.step()

            print(i,(d_real_loss + d_fake_loss).detach().cpu().numpy(), g_loss.detach().cpu().numpy())

            torch.save(g, "pkl/" + str(epoch) + "g.pkl")

以上网络结构和参数,是从另一个博客找来的Pytorch实战3:DCGAN深度卷积对抗生成网络生成动漫头像

其中调用了一个同目录下的data_helper模块,用来从本地数据文件夹中获取图片(list of arrray),其中需要把文件夹改成自己的文件夹:

import cv2
import os
MAIN_PATH="E:/DataSets/faces/"
def get_imgs():
    files = os.listdir(MAIN_PATH)
    imgs = []
    for file in files:
        imgs.append(cv2.imread(MAIN_PATH + file))
    print("get_imgs")
    return imgs

由于是对每个epoch都保存了网络结构,所以可以在训练完成后选择需要加载的本地网络文件,然后测试效果:

用下面的代码来测试:

import torch.nn as nn
import torch
import cv2
class Generator(nn.Module):
    def __init__(self):
        super(Generator, self).__init__()
        self.deconv1=nn.Sequential(
            nn.ConvTranspose2d(#stride(input_w-1)+k-2*Padding
                in_channels=100,
                out_channels=64*8,
                kernel_size=4,
                stride=1,
                padding=0,
                bias=False,
            ),
            nn.BatchNorm2d(64*8),
            nn.ReLU(inplace=True),

        )#14
        self.deconv2=nn.Sequential(
            nn.ConvTranspose2d(#stride(input_w-1)+k-2*Padding
                in_channels=64*8,
                out_channels=64*4,
                kernel_size=4,
                stride=2,
                padding=1,
                bias=False,
            ),
            nn.BatchNorm2d(64*4),
            nn.ReLU(inplace=True),

        )#24
        self.deconv3 = nn.Sequential(
            nn.ConvTranspose2d(  # stride(input_w-1)+k-2*Padding
                in_channels=64*4,
                out_channels=64*2,
                kernel_size=4,
                stride=2,
                padding=1,
                bias=False,
            ),
            nn.BatchNorm2d(64*2),
            nn.ReLU(inplace=True),

        )#48
        self.deconv4 = nn.Sequential(
            nn.ConvTranspose2d(  # stride(input_w-1)+k-2*Padding
                in_channels=64*2,
                out_channels=64*1,
                kernel_size=4,
                stride=2,
                padding=1,
                bias=False,
            ),
            nn.BatchNorm2d(64),
            nn.ReLU(inplace=True),


        )
        self.deconv5=nn.Sequential(
            nn.ConvTranspose2d(64,3,5,3,1,bias=False),
            nn.Tanh(),
        )
    def forward(self, x):
        x=self.deconv1(x)
        x=self.deconv2(x)
        x=self.deconv3(x)
        x=self.deconv4(x)
        x=self.deconv5(x)
        return  x

g=torch.load("pkl/15g.pkl")
imgs=g(torch.randn(100,100,1,1).cuda())
for i in range(len(imgs)):
    img=imgs[i].permute(1,2,0).cpu().detach().numpy()*255
    cv2.imwrite("bitmaps/"+str(i)+".jpg",img,)#这里需要在同目录下建立一个bitmap文件夹
print("done")

 接下来是运行的效果:

第一个epoch结束之后:

pytorch:DCGAN生成动漫头像_第3张图片

 第15个epoch之后:

一共训练了67个epoch,最终的结果:

可以看到效果和15个迭代器的差别不大,说明网络的收敛速度还是可以的,但是效果也不算太好,没有原先数据集中的美观。

你可能感兴趣的:(神经网络,pytorch学习,论文阅读笔记)