spark内存管理源码解读(基于Spark1.6)

在初始化SparkEnv时,可以看spark1.6支持两种内存管理方式: StaticMemoryManager(静态内存管理)和UnifiedMemoryManager(统一内存管理),spark1.6之前默认的是静态内存管理,spark1.6之后默认的管理机制是统一内存管理。具体源码如下:

//  1.6之前默认静态内存管理,1.6之后默认统一内存管理
    val useLegacyMemoryManager = conf.getBoolean("spark.memory.useLegacyMode", false)
    val memoryManager: MemoryManager =
      if (useLegacyMemoryManager) {
//      静态内存管理
        new StaticMemoryManager(conf, numUsableCores)
      } else {
//        统一内存管理
        UnifiedMemoryManager(conf, numUsableCores)
      }

(1)UnifiedMemoryManager(统一内存管理)

      先看下它的伴生对象,具体源码如下

object UnifiedMemoryManager {

  // Set aside a fixed amount of memory for non-storage, non-execution purposes.
  // This serves a function similar to `spark.memory.fraction`, but guarantees that we reserve
  // sufficient memory for the system even for small heaps. E.g. if we have a 1GB JVM, then
  // the memory used for execution and storage will be (1024 - 300) * 0.75 = 543MB by default.
  private val RESERVED_SYSTEM_MEMORY_BYTES = 300 * 1024 * 1024

  def apply(conf: SparkConf, numCores: Int): UnifiedMemoryManager = {
    val maxMemory = getMaxMemory(conf)
    new UnifiedMemoryManager(
      conf,
      maxMemory = maxMemory,
//      存储内存默认占可用内存的50%
      storageRegionSize =
        (maxMemory * conf.getDouble("spark.memory.storageFraction", 0.5)).toLong,
      numCores = numCores)
  }

  /**
   * 获取最大内存:该内存用于线程执行和数据存储(缓存)
   * Return the total amount of memory shared between execution and storage, in bytes.
   */
  private def getMaxMemory(conf: SparkConf): Long = {
//    系统可用内存
    val systemMemory = conf.getLong("spark.testing.memory", Runtime.getRuntime.maxMemory)
//    预留内存默认300
    val reservedMemory = conf.getLong("spark.testing.reservedMemory",
      if (conf.contains("spark.testing")) 0 else RESERVED_SYSTEM_MEMORY_BYTES)
    val minSystemMemory = reservedMemory * 1.5
    if (systemMemory < minSystemMemory) {
      throw new IllegalArgumentException(s"System memory $systemMemory must " +
        s"be at least $minSystemMemory. Please use a larger heap size.")
    }
    val usableMemory = systemMemory - reservedMemory
// 可用内存的0.75用于execution 和 storage ,0.25用于其他
    val memoryFraction = conf.getDouble("spark.memory.fraction", 0.75)
    (usableMemory * memoryFraction).toLong
  }
}

图解如下:

spark内存管理源码解读(基于Spark1.6)_第1张图片

调优参数

  • spark.testing.reservedMemory 预留内存(默认300M)
  • spark.memory.fraction 用于计算和存储的内存占可用内存比值(默认0.75)
  • spark.memory.storageFraction 存储内存占计算内存和存储内存之和的占比(默认0.5)
    

接下来看统一内存管理的伴生类,在里面可以看到

  // We always maintain this invariant(保持不变):  堆内内存+存储内存= 可用内存的*0.75(默认)
  assert(onHeapExecutionMemoryPool.poolSize + storageMemoryPool.poolSize == maxMemory)
  //onHeapExecutionMemory+storageMemory=maxMemory
  override def maxStorageMemory: Long = synchronized {
    maxMemory - onHeapExecutionMemoryPool.memoryUsed
  }

可以看出可用内存的75%用于execution和storage,只用维持这个公式(堆内内存+存储内存= 可用内存的*0.75)成立就好,为动态借用埋下伏笔。动态借用即当execution计算内存不够,而storage存储内存过多时,可以将一部份的storage存储内存划分到execution计算内存中去用于计算,反之同理。

接下来看动态调用时资源申请过程:

第一种情况:execution计算内存不足时,会调用UnifiedMemoryManager.acquireExecutionMemory方法,具体代码实现如下:

override private[memory] def acquireExecutionMemory(
      numBytes: Long,
      taskAttemptId: Long,
      memoryMode: MemoryMode): Long = synchronized {
    assert(onHeapExecutionMemoryPool.poolSize + storageMemoryPool.poolSize == maxMemory)
    assert(numBytes >= 0)
    memoryMode match {
      case MemoryMode.ON_HEAP =>

        /**
         * Grow the execution pool by evicting cached blocks, thereby shrinking the storage pool.
         *  通过减少storageMemory来增大executionMemory执行内存
         * When acquiring memory for a task, the execution pool may need to make multiple
         * attempts. Each attempt must be able to evict storage in case another task jumps in
         * and caches a large block between the attempts. This is called once per attempt.
         */
        def maybeGrowExecutionPool(extraMemoryNeeded: Long): Unit = {
          if (extraMemoryNeeded > 0) {
            // There is not enough free memory in the execution pool, so try to reclaim memory from
            // storage. We can reclaim any free memory from the storage pool. If the storage pool
            // has grown to become larger than `storageRegionSize`, we can evict blocks and reclaim
            // the memory that storage has borrowed from execution.
            val memoryReclaimableFromStorage =
              math.max(storageMemoryPool.memoryFree, storageMemoryPool.poolSize - storageRegionSize)
            if (memoryReclaimableFromStorage > 0) {
              // Only reclaim as much space as is necessary and available;减少storageMemory,增大executor堆内内存
              val spaceReclaimed = storageMemoryPool.shrinkPoolToFreeSpace(
                math.min(extraMemoryNeeded, memoryReclaimableFromStorage))
              onHeapExecutionMemoryPool.incrementPoolSize(spaceReclaimed)
            }
          }
        }

        /**
         * The size the execution pool would have after evicting storage memory.
         *
         * The execution memory pool divides this quantity among the active tasks evenly to cap
         * the execution memory allocation for each task. It is important to keep this greater
         * than the execution pool size, which doesn't take into account potential memory that
         * could be freed by evicting storage. Otherwise we may hit SPARK-12155.
         *
         * Additionally, this quantity should be kept below `maxMemory` to arbitrate fairness
         * in execution memory allocation across tasks, Otherwise, a task may occupy more than
         * its fair share of execution memory, mistakenly thinking that other tasks can acquire
         * the portion of storage memory that cannot be evicted.
         */
        def computeMaxExecutionPoolSize(): Long = {
          maxMemory - math.min(storageMemoryUsed, storageRegionSize)
        }

        onHeapExecutionMemoryPool.acquireMemory(
          numBytes, taskAttemptId, maybeGrowExecutionPool, computeMaxExecutionPoolSize)

      case MemoryMode.OFF_HEAP =>
        // For now, we only support on-heap caching of data, so we do not need to interact with
        // the storage pool when allocating off-heap memory. This will change in the future, though.
        //可以看出1.6版本只支持堆内内存缓存数据,2.0版本有改进
        offHeapExecutionMemoryPool.acquireMemory(numBytes, taskAttemptId)
    }
  }

 这里面其实只是定义了maybeGrowExecutionPool(预留storage中的内存给execution,动态借用内存的体现)和computeMaxExecutionPoolSize两个方法,供在ExecutionMemoryPool.acquireMemory这个方法里调用,这个方法才是具体execution内存申请的实现

 /**
   * Try to acquire up to `numBytes` of memory for the given task and return the number of bytes
   * obtained, or 0 if none can be allocated.
   *
   * This call may block until there is enough free memory in some situations, to make sure each
   * task has a chance to ramp up to at least 1 / 2N of the total memory pool (where N is the # of
   * active tasks) before it is forced to spill. This can happen if the number of tasks increase
   * but an older task had a lot of memory already.
   *
   * @param numBytes number of bytes to acquire
   * @param taskAttemptId the task attempt acquiring memory
   * @param maybeGrowPool a callback that potentially grows the size of this pool. It takes in
   *                      one parameter (Long) that represents the desired amount of memory by
   *                      which this pool should be expanded.
   * @param computeMaxPoolSize a callback that returns the maximum allowable size of this pool
   *                           at this given moment. This is not a field because the max pool
   *                           size is variable in certain cases. For instance, in unified
   *                           memory management, the execution pool can be expanded by evicting
   *                           cached blocks, thereby shrinking the storage pool.
   *
   * @return the number of bytes granted to the task.
   */
  private[memory] def acquireMemory(
      numBytes: Long,
      taskAttemptId: Long,
      maybeGrowPool: Long => Unit = (additionalSpaceNeeded: Long) => Unit,
      computeMaxPoolSize: () => Long = () => poolSize): Long = lock.synchronized {
    assert(numBytes > 0, s"invalid number of bytes requested: $numBytes")

    // TODO: clean up this clunky method signature

    // Add this task to the taskMemory map just so we can keep an accurate count of the number
    // of active tasks, to let other tasks ramp down their memory in calls to `acquireMemory`
    if (!memoryForTask.contains(taskAttemptId)) {
      memoryForTask(taskAttemptId) = 0L
      // This will later cause waiting tasks to wake up and check numTasks again
      lock.notifyAll()
    }

    // Keep looping until we're either sure that we don't want to grant this request (because this
    // task would have more than 1 / numActiveTasks of the memory) or we have enough free
    // memory to give it (we always let each task get at least 1 / (2 * numActiveTasks)).
    // TODO: simplify this to limit each task to its own slot
    while (true) {
      val numActiveTasks = memoryForTask.keys.size
      val curMem = memoryForTask(taskAttemptId)

      // In every iteration of this loop, we should first try to reclaim any borrowed execution
      // space from storage. This is necessary because of the potential race condition where new
      // storage blocks may steal the free execution memory that this task was waiting for.
      //预留storage内存给execution,防被新的storage blocks 给使用
      maybeGrowPool(numBytes - memoryFree)

      // Maximum size the pool would have after potentially growing the pool.
      // This is used to compute the upper bound of how much memory each task can occupy. This
      // must take into account potential free memory as well as the amount this pool currently
      // occupies. Otherwise, we may run into SPARK-12155 where, in unified memory management,
      // we did not take into account space that could have been freed by evicting cached blocks.
      val maxPoolSize = computeMaxPoolSize()
      val maxMemoryPerTask = maxPoolSize / numActiveTasks
      val minMemoryPerTask = poolSize / (2 * numActiveTasks)

      // How much we can grant this task; keep its share within 0 <= X <= 1 / numActiveTasks
      val maxToGrant = math.min(numBytes, math.max(0, maxMemoryPerTask - curMem))
      // Only give it as much memory as is free, which might be none if it reached 1 / numTasks
      val toGrant = math.min(maxToGrant, memoryFree)  //需要申请的内存大小

      // We want to let each task get at least 1 / (2 * numActiveTasks) before blocking;
      // if we can't give it this much now, wait for other tasks to free up memory
      // (this happens if older tasks allocated lots of memory before N grew)
      // 原有内存+申请内存要大于总资源的1/2N (其中N是存活task数目)
      if (toGrant < numBytes && curMem + toGrant < minMemoryPerTask) {
        logInfo(s"TID $taskAttemptId waiting for at least 1/2N of $poolName pool to be free")
        lock.wait()
      } else {
      //加大execution计算内存
        memoryForTask(taskAttemptId) += toGrant
        return toGrant
      }
    }
    0L  // Never reached
  }

execution向storage借用内存的过程大致就是这样了,接下来看storage向execution借用内存。

第二种情况:storage存储内存不足时,会调用UnifiedMemoryManager.acquireStorageMemory方法,具体代码实现如下:

override def acquireStorageMemory(
      blockId: BlockId,
      numBytes: Long,
      evictedBlocks: mutable.Buffer[(BlockId, BlockStatus)]): Boolean = synchronized {
//    做校验
    assert(onHeapExecutionMemoryPool.poolSize + storageMemoryPool.poolSize == maxMemory)
    assert(numBytes >= 0)
    if (numBytes > maxStorageMemory) {
      // Fail fast if the block simply won't fit
      logInfo(s"Will not store $blockId as the required space ($numBytes bytes) exceeds our " +
        s"memory limit ($maxStorageMemory bytes)")
      return false
    }
    if (numBytes > storageMemoryPool.memoryFree) {
      // There is not enough free memory in the storage pool, so try to borrow free memory from
      // the execution pool.为storage借用预留execution内存,减少execution内存增大storage内存,动态借用内存的体现
      val memoryBorrowedFromExecution = Math.min(onHeapExecutionMemoryPool.memoryFree, numBytes)
      onHeapExecutionMemoryPool.decrementPoolSize(memoryBorrowedFromExecution)
      storageMemoryPool.incrementPoolSize(memoryBorrowedFromExecution)
    }
//    storage申请内存具体实现方法
    storageMemoryPool.acquireMemory(blockId, numBytes, evictedBlocks)
  }

里面的动态借用体现的代码是:

 // the execution pool.为storage借用预留execution内存,减少execution内存增大storage内存,动态借用内存的体现
      val memoryBorrowedFromExecution = Math.min(onHeapExecutionMemoryPool.memoryFree, numBytes)
      onHeapExecutionMemoryPool.decrementPoolSize(memoryBorrowedFromExecution)
      storageMemoryPool.incrementPoolSize(memoryBorrowedFromExecution)
    }

而具体storage内存申请过程是调用StorageMemoryPool.acquireMemory这个方法

/**
   * Acquire N bytes of storage memory for the given block, evicting existing ones if necessary.
   *
   * @param blockId the ID of the block we are acquiring storage memory for
   * @param numBytesToAcquire the size of this block
   * @param numBytesToFree the amount of space to be freed through evicting blocks
   * @return whether all N bytes were successfully granted.
   */
  def acquireMemory(
      blockId: BlockId,
      numBytesToAcquire: Long,
      numBytesToFree: Long,
      evictedBlocks: mutable.Buffer[(BlockId, BlockStatus)]): Boolean = lock.synchronized {
    assert(numBytesToAcquire >= 0)
    assert(numBytesToFree >= 0)
    assert(memoryUsed <= poolSize)
    if (numBytesToFree > 0) {
      memoryStore.evictBlocksToFreeSpace(Some(blockId), numBytesToFree, evictedBlocks)
      // Register evicted blocks, if any, with the active task metrics
      Option(TaskContext.get()).foreach { tc =>
        val metrics = tc.taskMetrics()
        val lastUpdatedBlocks = metrics.updatedBlocks.getOrElse(Seq[(BlockId, BlockStatus)]())
        metrics.updatedBlocks = Some(lastUpdatedBlocks ++ evictedBlocks.toSeq)
      }
    }
    // NOTE: If the memory store evicts blocks, then those evictions will synchronously call
    // back into this StorageMemoryPool in order to free memory. Therefore, these variables
    // should have been updated.
    val enoughMemory = numBytesToAcquire <= memoryFree
    if (enoughMemory) {
//      增加storage内存
      _memoryUsed += numBytesToAcquire
    }
    enoughMemory
  }

至此,统一内存管理源码解读就结束了,接下来分析静态内存管理。

(2)StaticMemoryManager(静态内存管理)

先看它的伴生对象,源代码如下

private[spark] object StaticMemoryManager {

  /**
   * Return the total amount of memory available for the storage region, in bytes.
   */
  private def getMaxStorageMemory(conf: SparkConf): Long = {
    val systemMaxMemory = conf.getLong("spark.testing.memory", Runtime.getRuntime.maxMemory)
    val memoryFraction = conf.getDouble("spark.storage.memoryFraction", 0.6)
    val safetyFraction = conf.getDouble("spark.storage.safetyFraction", 0.9)
    (systemMaxMemory * memoryFraction * safetyFraction).toLong
  }

  /**
   * Return the total amount of memory available for the execution region, in bytes.
   */
  private def getMaxExecutionMemory(conf: SparkConf): Long = {
    val systemMaxMemory = conf.getLong("spark.testing.memory", Runtime.getRuntime.maxMemory)
    val memoryFraction = conf.getDouble("spark.shuffle.memoryFraction", 0.2)
    val safetyFraction = conf.getDouble("spark.shuffle.safetyFraction", 0.8)
    (systemMaxMemory * memoryFraction * safetyFraction).toLong
  }

}

图解如下:spark内存管理源码解读(基于Spark1.6)_第2张图片

静态内存管理申请存储内存和计算内存的实现和统一内存管理调用的是同样的方法,这里就不再进行解读了。

你可能感兴趣的:(spark,源码,内存管理)