- 学Simulink——整流器场景:基于Simulink的单相全桥可控硅整流器仿真建模
xiaoheshang_123
MATLAB开发项目实例1000例专栏手把手教你学MATLAB专栏simulinkmatlab
目录手把手教你学Simulink——整流器场景:基于Simulink的单相全桥可控硅整流器仿真建模一、背景介绍二、系统结构设计三、建模过程第一步:创建新Simulink项目第二步:添加主要模块1.交流电源2.单相全桥可控硅整流器3.LC滤波器4.负载模拟5.触发脉冲生成模块6.测量模块第三步:搭建主电路拓扑第四步:搭建触发脉冲生成逻辑1.设计触发脉冲逻辑2.集成至Simulink模型四、参数设置五
- 数字图像处理第二次实验
愚戏师
数字图像处理python图像处理
实验三技术点分析根据实验要求,需要实现以下图像空间域滤波技术:噪声生成:高斯噪声椒盐噪声空间域滤波:均值滤波(3×3,5×5,7×7)中值滤波(3×3,5×5,7×7)最大值滤波最小值滤波图像处理流程:读取原始图像添加噪声(高斯/椒盐)应用各种滤波器可视化对比结果完整示例代码importcv2importnumpyasnpimportmatplotlib.pyplotaspltfrommatplo
- 基于MATLAB平台设计并实现自适应噪声抵消器(Adaptive Noise Canceller, ANC)
AI Dog
自动控制matlab自适应噪声抵消器ANC信号去噪
本课题旨在基于MATLAB平台设计并实现自适应噪声抵消器(AdaptiveNoiseCanceller,ANC),以有效去除信号中的背景噪声,提升语音、医疗或通信系统中的信噪比。系统采用自适应滤波算法,如最小均方误差(LMS)或归一化LMS(NLMS)算法,通过参考噪声信号估计并抵消主通道信号中的噪声成分,实现动态降噪。研究内容包括信号采集与仿真建模、自适应滤波器结构设计、算法参数调整及降噪性能评
- matlab 渐进三角网(PTD)地面滤波(基础版)
点云侠
matlab点云工具箱matlab开发语言算法c++计算机视觉
目录一、算法原理1、PTD算法2、实现流程二、代码实现三、结果展示1、原始点云2、滤波结果代码是按照算法原理的复现,效率极低,只适合学习和理解算法。一、算法原理1、PTD算法 渐进三角网地面滤波算法(ProgressiveTINDensification,PTD)是一种广泛应用于机载LiDAR点云数据处理的滤波方法,旨在从复杂场景中精确分离地面点,以生成数字高程模型(DEM)。2、实现流程 P
- 数字信号处理(DSP)全方位学习指南
本文还有配套的精品资源,点击获取简介:数字信号处理(DSP)是信息技术的关键部分,涉及多种数字信号的分析与处理技术,广泛应用于多个技术领域。本指南深入探索DSP的集成开发环境(IDE),基础概念,以及专业词汇,旨在帮助读者系统掌握DSP原理和实践技能。内容涵盖DSP集成开发环境CCS的使用、基础知识如傅里叶变换与滤波器设计,以及专业术语的学习。此外,还介绍了DSP在音频、图像处理和通信系统中的实际
- ISP Pipeline(4): Anti Aliasing Noise Filter 抗锯齿与降噪滤波器
andwhataboutit?
接口隔离原则
上一篇文章讲的是:ISPPipeline(3):LensShadingCorrection镜头阴影校正-CSDN博客视频:(5)AntiAliasingNoiseFilter|ImageSignalProcessingPipelineTutorialSeries源码:ISPPipeline(3):LensShadingCorrection镜头阴影校正-CSDN博客Anti-AliasingNois
- 学 Simulink:实时系统与嵌入式部署类场景ROS + Simulink 联合仿真的多传感器信号融合与滤波模块
amy_mhd
simulinkmatlab
目录ROS+Simulink联合仿真的多传感器信号融合与滤波模块场景目标✅准备工作软件安装:硬件准备(可选):步骤详解第一步:创建Simulink模型并配置ROS支持启用ROS工具箱支持:第二步:添加ROS输入接口(接收传感器数据)使用Subscribe模块接收ROSTopic数据:第三步:设计滤波与信号预处理模块方法一:IMU数据滤波(加速度+角速度)方法二:卡尔曼滤波器(KalmanFilte
- Open3D 进阶(31)渐进三角网(PTD)地面滤波
点云侠
点云进阶线性代数算法计算机视觉python
目录一、算法原理1、PTD算法2、实现流程二、代码实现三、参数指南四、结果展示。一、算法原理1、PTD算法 渐进三角网地面滤波算法(ProgressiveTINDensification,PTD)是一种广泛应用于机载LiDAR点云数据处理的滤波方法,旨在从复杂场景中精确分离地面点,以生成数字高程模型(DEM)。2、实现流程 PTD的核心思想是迭代加密三角网,逐步逼近真实地形:实现流程主要包括以
- 点云从入门到精通技术详解100篇-点云滤波算法及单木信息提取
格图素书
人工智能
目录知识储备点云滤波算法及单木信息提取点云条件滤波单木信息提取1.点云预处理2.点云密度计算3.密度阈值筛选4.骨架提取5.骨架细化优化方向前言国内外研究现状激光雷达研究现状点云数据的滤波算法研究现状单木分割应用现状LiDAR工作原理与点云数据的组成2.1LiDAR系统的内部结构2.1.1激光测距单元2.1.2光学机械扫描单元2.1.3惯性导航系统INS2.1.4动态差分GPS2.2定位原理2.3
- 在Simulink中进行基于蚁群算法优化滤波器带宽的智能控制系统仿真
amy_mhd
算法前端数据库simulinkmatlab
目录一、背景介绍二、所需工具和环境三、步骤详解步骤1:定义问题与目标示例:定义优化目标步骤2:准备数据集或模拟环境示例:生成测试信号步骤3:设计并实现蚁群算法示例:简单的蚁群算法实现步骤4:创建Simulink模型步骤5:添加滤波器模块示例:添加FIR滤波器步骤6:集成蚁群算法结果示例:MATLABFunctionBlock代码步骤7:设置仿真参数步骤8:运行仿真并分析结果四、总结蚁群算法(Ant
- [信号与系统]IIR滤波器与FIR滤波器的表达、性质以及一些分析
庭师_Official
信号与系统信号与系统信号处理
前言阅读本文需要阅读一些前置知识[信号与系统]傅里叶变换、卷积定理、和为什么时域的卷积等于频域相乘。[信号与系统]有关滤波器的一些知识背景[信号与系统]关于LTI系统的转换方程、拉普拉斯变换和z变换[信号与系统]关于双线性变换IIR滤波器的数学表达式IIR(InfiniteImpulseResponse)滤波器的输出信号y[n]y[n]y[n]可以用输入信号x[n]x[n]x[n]和滤波器系数表示
- 使用Simulink结合MATLAB进行基于强化学习控制下的动态滤波器参数调节系统的仿真
amy_mhd
matlab开发语言
目录一、背景介绍二、所需工具和环境三、步骤详解步骤1:定义系统需求示例:定义系统需求步骤2:准备强化学习环境步骤3:训练强化学习代理步骤4:创建Simulink模型步骤5:添加信号源步骤6:合并信号步骤7:导入强化学习代理步骤8:设计滤波器步骤9:可视化结果步骤10:连接各模块步骤11:设置仿真参数步骤12:运行仿真并分析结果四、总结在现代信号处理领域,动态调整滤波器参数以适应不断变化的环境条件是
- Python-OpenCV-图像滤波
卡朗
PythonOpenCVpythonopencv计算机视觉人工智能图像处理
图像除了包含对应灰度或彩色信息,还包含一些无用的噪点等造成的不均匀扭曲。滤波可以清除这些噪点,平滑图像细节,使得图像更加清晰。均值滤波均值滤波器的原理是将每个像素的灰度值替换为其周围像素灰度值的平均值。其核心思想是去除图像中的高频噪声,同时保留图像中的低频信息。在进行均值滤波操作时,需要定义一个滤波模板(卷积核),通常是一个矩形区域,其大小由模板的宽度和高度决定。在模板中的每一个像素,都会与该像素
- 【无人机/平衡车/机器人】详解STM32+MPU6050姿态解算—卡尔曼滤波+四元数法+互补滤波——附3个算法源码
1.卡尔曼滤波卡尔曼滤波是一种线性最优估计方法,用于估计动态系统的状态。在姿态解算中,我们可以使用卡尔曼滤波来融合陀螺仪和加速度计的数据,以获得更稳定的姿态估计。以下是一个简单的卡尔曼滤波器实现:```c#include"kalman.h"voidKalman_Init(Kalman_TypeDef*Kalman){Kalman->P[0][0]=1;Kalman->P[1][1]=1;Kalma
- 多目标跟踪
行走的小部落
目标跟踪人工智能计算机视觉
侦探联盟:多目标跟踪大作战适合对象:高中生关键点:多目标跟踪、传统方法、深度学习、卡尔曼滤波、匈牙利算法、CNN、Re-ID序章:神秘的闹市阴影夜晚的星城,一场盛大的街头音乐节即将开幕。灯光下,形形色色的人在广场上游走。人声、音乐声交织成宏大的交响。突然,警局接到一封匿名信:有人要在音乐节上搞破坏,还不止一个人。“多目标追踪联盟”火速集结:他们擅长在人群中盯梢,每一个侦探都有独特的本领。今天,他们
- 基于matlab的语音信号去噪
文章目录前言1.获取音频1.1读取原始音频1.2读取代码展示1.3截取音频1.4可视化处理1.4.1原始信号时域图1.4.2原始信号频谱图2.加噪处理2.1高斯白噪声2.2高通滤波器2.2.1filterDesigner2.2.2信号分析器2.3噪音叠加处理2.4可视化处理2.4.1加噪时域图2.4.2加噪频域图3.滤波降噪3.1技术指标3.2设计巴特沃斯低通滤波器滤波3.3滤波结果可视化3.3.
- C#Halcon从零开发_Day12_轮廓边缘处理
仙贝大饼
C#联合Halcon从零编程人工智能计算机视觉Halcon机器学习c#轮廓处理
引言之前是依靠卡尺来获取直线,也可以通过xld轮廓来截取直线段dev_get_window(WindowHandle)read_image(Image,'C:/Users/10314/Desktop/pic1.png')一、边缘提取*Edges:提取的亚像素边缘轮廓(XLD格式),包含边缘点的坐标和方向信息*'canny'边缘检测滤波器的类型,决定边缘检测的灵敏度和方向*'lanser2':基于二
- STM32之定时器之输入捕获
绿竹-大地
stm32单片机嵌入式硬件
从上图可以看到输入捕获的配置流程,第一步就是配置GPIO口,以及复用。然后就是配置滤波器,这里的滤波器并不会改变信号频率,而是以非常高速的脉冲连续采样,当连续采样的电平都是一样的时候才会将信号发送给下面的电路。然后就是配置边沿检测,可以选择上升沿触发也可以选择下降沿触发。然后就是配置信号分路,是想要直连这一条路还是另外一条路。然后就是分频器的配置,对信号进行分频处理。最后就是CCR了,这里需要补充
- PLC(光分路器)技术以及制作工艺大全
亿源通科技
PLC分路器光纤通信光通信
PLC更广为人知的是在电子技术领域,它是可编程逻辑控制器(ProgrammableLogicController)的简称。在光通信技术领域,PLC是平面光路(PlanarLightwaveCircuit)的简称,它是基于集成光学技术制备的各种光波导结构,在技术上,可实现的功能性器件有方向耦合器DC、Y分支器、多模干涉耦合器MMI、阵列波导光栅AWG、光学梳状滤波器ITL、马赫-增德尔MZ电光调制器
- 超高速10G采集卡
FPGA_ADDA
fpga开发高速采集卡10G采集卡
超高速10G采集卡是一款高端14位数据采集平台,旨在满足最具挑战性的测量环境。特性:单通道和双通道操作单通道10GSPS或双通道5GSPS7GByte/s持续数据传输速率开放式FPGA支持实时DSP脉冲检测固件选项波形平均固件选项特征单通道和双通道工作模式双通道5GSPS,单通道10GSPS采样率14位垂直分辨率DC耦合3GHz模拟带宽数字用户控制降噪滤波器可编程DC偏移内部和外部时钟参考内部和外
- 使用Simulink进行基于高通滤波器的设计与性能分析仿真实验
amy_mhd
simulinkmatlab
目录一、背景介绍二、所需工具和环境三、步骤详解步骤1:定义系统需求示例:定义系统需求步骤2:创建Simulink模型步骤3:添加信号源示例:添加信号源步骤4:添加加法器步骤5:设计高通滤波器示例:添加高通滤波器步骤6:可视化结果步骤7:连接各模块步骤8:设置仿真参数步骤9:运行仿真并分析结果四、进阶内容(可选)五、总结高通滤波器(High-passFilter,HPF)是一种允许高于某个截止频率的
- stm32项目(13)——基于stm32的倒车雷达装置
嵌入式小李(接定制)
stm32stm32单片机倒车雷达超声波模块
1.功能设计使用stm32f103zet6,(某原子精英板)。利用一个超声波模块:HCSR04,测距(使用了简单滤波算法:测十次数据,去掉最大值、去掉最小值,求平均值),将距离信息实时显示在LCD屏幕上。设定一个距离阈值,当所测距离小于阈值时,蜂鸣器报警,LED灯亮,同时屏幕上显示一副“注意危险”的图片。距离大于阈值的时候,蜂鸣器不响,LED灯不亮,屏幕不显示图片。(需要代码的直接移步到第五节)所
- 使用Simulink进行基于雷达脉冲压缩技术和匹配滤波器的仿真实验
xiaoheshang_123
手把手教你学MATLAB专栏matlabsimulink
目录背景介绍所需工具和环境步骤详解步骤1:定义系统需求示例:定义系统需求步骤2:创建Simulink模型步骤3:添加雷达发射信号源步骤4:配置天线阵列(可选)步骤5:设置目标模型步骤6:添加自由空间信道模型步骤7:配置匹配滤波器步骤8:可视化结果步骤9:连接各模块步骤10:设置仿真参数步骤11:运行仿真并分析结果总结雷达脉冲压缩技术是一种用于提高雷达分辨率和信噪比的关键技术。它通过发射宽脉冲信号并
- 【SLAM】基于拓展卡尔曼滤波实现激光雷达传感器和角点提取的机器人定位附matlab代码
matlab科研社
机器人matlab数据结构
✅作者简介:热爱科研的Matlab仿真开发者,擅长数据处理、建模仿真、程序设计、完整代码获取、论文复现及科研仿真。往期回顾关注个人主页:Matlab科研工作室个人信条:格物致知,完整Matlab代码及仿真咨询内容私信。内容介绍自主移动机器人定位是机器人学研究的核心问题之一。本文探讨了基于拓展卡尔曼滤波(EKF)融合激光雷达传感器数据和角点提取技术实现机器人定位的方法。通过深入分析激光雷达传感器的工
- 现代控制理论与应用:深入解析与实践指南
Hsmiau
本文还有配套的精品资源,点击获取简介:现代控制理论拓展了经典控制理论,专注于非线性、多变量、时变和随机系统的分析与设计。它涵盖了状态空间表示、线性时不变系统、李雅普诺夫稳定性、最优控制、卡尔曼滤波等关键概念。此外,还包括了处理非线性控制系统的多种方法,以及多变量系统和鲁棒控制的策略。自适应控制和智能控制则是现代控制理论中结合人工智能和机器学习的发展前沿。通过掌握这些理论和技术,学习者可以深入理解复
- 基于EKF的三自由度车辆定位算法解析与实践
南风寺山
本文还有配套的精品资源,点击获取简介:扩展卡尔曼滤波器(EKF)是处理非线性系统的有效算法,广泛应用于车辆定位、自动驾驶和机器人导航。本文档提供的源码针对车辆三自由度动态模型实现了EKF,通过传感器数据融合提高了车辆定位的精度。文档详细解析了EKF在车辆定位中的应用,从基础理论到算法流程,再到源码的具体实现,为开发者提供了深入学习EKF的机会,并展示了如何利用EKF实现精确的车辆定位。1.EKF基
- 当卷积作用于信号处理
思绪漂移
信号处理
当卷积作用于信号处理场景一:语音信号的信噪比提升智能耳机一般都有一个选项环境音量自适应,当在地铁上使用时,是否好奇它是如何在嘈杂环境中准确捕捉人声的?背后是一套实时卷积处理系统。通过持续分析环境噪声的频谱特征,系统动态生成具有特定频响特性的卷积核。当嘈杂环境的低频机械噪声和高频啸叫声被麦克风捕捉时,这些定制化的数字滤波器会像剪刀,剪除不同范围的频段,同时保留关键人声频段。在高端降噪耳机中,这种技术
- 工业视觉新范式:解码迁移科技CCD相机的智造密码
lingling009
数码相机
一、技术解码:重新定义工业视觉基准1.1高精度成像核心架构迁移科技CCD相机采用三重复合技术矩阵:光学层:$0.5\mum$级微距补偿镜头组传感层:12bit深度AD转换芯片算法层:自适应环境光滤波算法关键技术指标对照表:参数项行业标准EB系列EC系列分辨率5MP12MP25MP帧率30fps60fps120fps温度耐受-10~50℃-20~60℃-30~70℃振动补偿3轴6轴9轴1.2动态捕捉
- OpenCV-Python 图像平滑
2D卷积与一维信号一样,我们也可以对2D图像实施低通滤波(LPF),高通滤波(HPF)等。LPF帮助我们去除噪音,模糊图像。HPF帮助我们找到图像的边缘OpenCV提供的函数cv.filter2D()可以让我们对一幅图像进行卷积操作。下面我们将对一幅图像使用平均滤波器。下面是一个5x5的平均滤波器核:K=\frac{1}{25}\begin{bmatrix}1&1&1&1&1\1&1&1&1&1\
- OpenCV图像处理技术(Python)——图像金字塔
©FuXianjun.AllRightsReserved.一、理论基础图像金字塔是同一图像不同分辨率的子图集合,是通过对原图像不断地向下采样而产生的,即由高分变率的图像(大尺寸)产生低分辨率的近似图像(小尺寸)。·邻域滤波器:采用邻域平均技术求原始图像的近似图像。该滤波器能够产生平均金字塔。·高斯滤波器:采用高斯滤波器对原始图像进行滤波,得到高斯金字塔。这是OpenCV函数cv2.pyrDown(
- 用MiddleGenIDE工具生成hibernate的POJO(根据数据表生成POJO类)
AdyZhang
POJOeclipseHibernateMiddleGenIDE
推荐:MiddlegenIDE插件, 是一个Eclipse 插件. 用它可以直接连接到数据库, 根据表按照一定的HIBERNATE规则作出BEAN和对应的XML ,用完后你可以手动删除它加载的JAR包和XML文件! 今天开始试着使用
- .9.png
Cb123456
android
“点九”是andriod平台的应用软件开发里的一种特殊的图片形式,文件扩展名为:.9.png
智能手机中有自动横屏的功能,同一幅界面会在随着手机(或平板电脑)中的方向传感器的参数不同而改变显示的方向,在界面改变方向后,界面上的图形会因为长宽的变化而产生拉伸,造成图形的失真变形。
我们都知道android平台有多种不同的分辨率,很多控件的切图文件在被放大拉伸后,边
- 算法的效率
天子之骄
算法效率复杂度最坏情况运行时间大O阶平均情况运行时间
算法的效率
效率是速度和空间消耗的度量。集中考虑程序的速度,也称运行时间或执行时间,用复杂度的阶(O)这一标准来衡量。空间的消耗或需求也可以用大O表示,而且它总是小于或等于时间需求。
以下是我的学习笔记:
1.求值与霍纳法则,即为秦九韶公式。
2.测定运行时间的最可靠方法是计数对运行时间有贡献的基本操作的执行次数。运行时间与这个计数成正比。
- java数据结构
何必如此
java数据结构
Java 数据结构
Java工具包提供了强大的数据结构。在Java中的数据结构主要包括以下几种接口和类:
枚举(Enumeration)
位集合(BitSet)
向量(Vector)
栈(Stack)
字典(Dictionary)
哈希表(Hashtable)
属性(Properties)
以上这些类是传统遗留的,在Java2中引入了一种新的框架-集合框架(Collect
- MybatisHelloWorld
3213213333332132
//测试入口TestMyBatis
package com.base.helloworld.test;
import java.io.IOException;
import org.apache.ibatis.io.Resources;
import org.apache.ibatis.session.SqlSession;
import org.apache.ibat
- Java|urlrewrite|URL重写|多个参数
7454103
javaxmlWeb工作
个人工作经验! 如有不当之处,敬请指点
1.0 web -info 目录下建立 urlrewrite.xml 文件 类似如下:
<?xml version="1.0" encoding="UTF-8" ?>
<!DOCTYPE u
- 达梦数据库+ibatis
darkranger
sqlmysqlibatisSQL Server
--插入数据方面
如果您需要数据库自增...
那么在插入的时候不需要指定自增列.
如果想自己指定ID列的值, 那么要设置
set identity_insert 数据库名.模式名.表名;
----然后插入数据;
example:
create table zhabei.test(
id bigint identity(1,1) primary key,
nam
- XML 解析 四种方式
aijuans
android
XML现在已经成为一种通用的数据交换格式,平台的无关性使得很多场合都需要用到XML。本文将详细介绍用Java解析XML的四种方法。
XML现在已经成为一种通用的数据交换格式,它的平台无关性,语言无关性,系统无关性,给数据集成与交互带来了极大的方便。对于XML本身的语法知识与技术细节,需要阅读相关的技术文献,这里面包括的内容有DOM(Document Object
- spring中配置文件占位符的使用
avords
1.类
<?xml version="1.0" encoding="UTF-8"?><!DOCTYPE beans PUBLIC "-//SPRING//DTD BEAN//EN" "http://www.springframework.o
- 前端工程化-公共模块的依赖和常用的工作流
bee1314
webpack
题记: 一个人的项目,还有工程化的问题嘛? 我们在推进模块化和组件化的过程中,肯定会不断的沉淀出我们项目的模块和组件。对于这些沉淀出的模块和组件怎么管理?另外怎么依赖也是个问题? 你真的想这样嘛? var BreadCrumb = require(‘../../../../uikit/breadcrumb’); //真心ugly。
- 上司说「看你每天准时下班就知道你工作量不饱和」,该如何回应?
bijian1013
项目管理沟通IT职业规划
问题:上司说「看你每天准时下班就知道你工作量不饱和」,如何回应
正常下班时间6点,只要是6点半前下班的,上司都认为没有加班。
Eno-Bea回答,注重感受,不一定是别人的
虽然我不知道你具体从事什么工作与职业,但是我大概猜测,你是从事一项不太容易出现阶段性成果的工作
- TortoiseSVN,过滤文件
征客丶
SVN
环境:
TortoiseSVN 1.8
配置:
在文件夹空白处右键
选择 TortoiseSVN -> Settings
在 Global ignote pattern 中添加要过滤的文件:
多类型用英文空格分开
*name : 过滤所有名称为 name 的文件或文件夹
*.name : 过滤所有后缀为 name 的文件或文件夹
--------
- 【Flume二】HDFS sink细说
bit1129
Flume
1. Flume配置
a1.sources=r1
a1.channels=c1
a1.sinks=k1
###Flume负责启动44444端口
a1.sources.r1.type=avro
a1.sources.r1.bind=0.0.0.0
a1.sources.r1.port=44444
a1.sources.r1.chan
- The Eight Myths of Erlang Performance
bookjovi
erlang
erlang有一篇guide很有意思: http://www.erlang.org/doc/efficiency_guide
里面有个The Eight Myths of Erlang Performance: http://www.erlang.org/doc/efficiency_guide/myths.html
Myth: Funs are sl
- java多线程网络传输文件(非同步)-2008-08-17
ljy325
java多线程socket
利用 Socket 套接字进行面向连接通信的编程。客户端读取本地文件并发送;服务器接收文件并保存到本地文件系统中。
使用说明:请将TransferClient, TransferServer, TempFile三个类编译,他们的类包是FileServer.
客户端:
修改TransferClient: serPort, serIP, filePath, blockNum,的值来符合您机器的系
- 读《研磨设计模式》-代码笔记-模板方法模式
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
import java.sql.Connection;
import java.sql.DriverManager;
import java.sql.PreparedStatement;
import java.sql.ResultSet;
- 配置心得
chenyu19891124
配置
时间就这样不知不觉的走过了一个春夏秋冬,转眼间来公司已经一年了,感觉时间过的很快,时间老人总是这样不停走,从来没停歇过。
作为一名新手的配置管理员,刚开始真的是对配置管理是一点不懂,就只听说咱们公司配置主要是负责升级,而具体该怎么做却一点都不了解。经过老员工的一点点讲解,慢慢的对配置有了初步了解,对自己所在的岗位也慢慢的了解。
做了一年的配置管理给自总结下:
1.改变
从一个以前对配置毫无
- 对“带条件选择的并行汇聚路由问题”的再思考
comsci
算法工作软件测试嵌入式领域模型
2008年上半年,我在设计并开发基于”JWFD流程系统“的商业化改进型引擎的时候,由于采用了新的嵌入式公式模块而导致出现“带条件选择的并行汇聚路由问题”(请参考2009-02-27博文),当时对这个问题的解决办法是采用基于拓扑结构的处理思想,对汇聚点的实际前驱分支节点通过算法预测出来,然后进行处理,简单的说就是找到造成这个汇聚模型的分支起点,对这个起始分支节点实际走的路径数进行计算,然后把这个实际
- Oracle 10g 的clusterware 32位 下载地址
daizj
oracle
Oracle 10g 的clusterware 32位 下载地址
http://pan.baidu.com/share/link?shareid=531580&uk=421021908
http://pan.baidu.com/share/link?shareid=137223&uk=321552738
http://pan.baidu.com/share/l
- 非常好的介绍:Linux定时执行工具cron
dongwei_6688
linux
Linux经过十多年的发展,很多用户都很了解Linux了,这里介绍一下Linux下cron的理解,和大家讨论讨论。cron是一个Linux 定时执行工具,可以在无需人工干预的情况下运行作业,本文档不讲cron实现原理,主要讲一下Linux定时执行工具cron的具体使用及简单介绍。
新增调度任务推荐使用crontab -e命令添加自定义的任务(编辑的是/var/spool/cron下对应用户的cr
- Yii assets目录生成及修改
dcj3sjt126com
yii
assets的作用是方便模块化,插件化的,一般来说出于安全原因不允许通过url访问protected下面的文件,但是我们又希望将module单独出来,所以需要使用发布,即将一个目录下的文件复制一份到assets下面方便通过url访问。
assets设置对应的方法位置 \framework\web\CAssetManager.php
assets配置方法 在m
- mac工作软件推荐
dcj3sjt126com
mac
mac上的Terminal + bash + screen组合现在已经非常好用了,但是还是经不起iterm+zsh+tmux的冲击。在同事的强烈推荐下,趁着升级mac系统的机会,顺便也切换到iterm+zsh+tmux的环境下了。
我为什么要要iterm2
切换过来也是脑袋一热的冲动,我也调查过一些资料,看了下iterm的一些优点:
* 兼容性好,远程服务器 vi 什么的低版本能很好兼
- Memcached(三)、封装Memcached和Ehcache
frank1234
memcachedehcachespring ioc
本文对Ehcache和Memcached进行了简单的封装,这样对于客户端程序无需了解ehcache和memcached的差异,仅需要配置缓存的Provider类就可以在二者之间进行切换,Provider实现类通过Spring IoC注入。
cache.xml
<?xml version="1.0" encoding="UTF-8"?>
- Remove Duplicates from Sorted List II
hcx2013
remove
Given a sorted linked list, delete all nodes that have duplicate numbers, leaving only distinct numbers from the original list.
For example,Given 1->2->3->3->4->4->5,
- Spring4新特性——注解、脚本、任务、MVC等其他特性改进
jinnianshilongnian
spring4
Spring4新特性——泛型限定式依赖注入
Spring4新特性——核心容器的其他改进
Spring4新特性——Web开发的增强
Spring4新特性——集成Bean Validation 1.1(JSR-349)到SpringMVC
Spring4新特性——Groovy Bean定义DSL
Spring4新特性——更好的Java泛型操作API
Spring4新
- MySQL安装文档
liyong0802
mysql
工作中用到的MySQL可能安装在两种操作系统中,即Windows系统和Linux系统。以Linux系统中情况居多。
安装在Windows系统时与其它Windows应用程序相同按照安装向导一直下一步就即,这里就不具体介绍,本文档只介绍Linux系统下MySQL的安装步骤。
Linux系统下安装MySQL分为三种:RPM包安装、二进制包安装和源码包安装。二
- 使用VS2010构建HotSpot工程
p2p2500
HotSpotOpenJDKVS2010
1. 下载OpenJDK7的源码:
http://download.java.net/openjdk/jdk7
http://download.java.net/openjdk/
2. 环境配置
▶
- Oracle实用功能之分组后列合并
seandeng888
oracle分组实用功能合并
1 实例解析
由于业务需求需要对表中的数据进行分组后进行合并的处理,鉴于Oracle10g没有现成的函数实现该功能,且该功能如若用JAVA代码实现会比较复杂,因此,特将SQL语言的实现方式分享出来,希望对大家有所帮助。如下:
表test 数据如下:
ID,SUBJECTCODE,DIMCODE,VALUE
1&nbs
- Java定时任务注解方式实现
tuoni
javaspringjvmxmljni
Spring 注解的定时任务,有如下两种方式:
第一种:
<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http
- 11大Java开源中文分词器的使用方法和分词效果对比
yangshangchuan
word分词器ansj分词器Stanford分词器FudanNLP分词器HanLP分词器
本文的目标有两个:
1、学会使用11大Java开源中文分词器
2、对比分析11大Java开源中文分词器的分词效果
本文给出了11大Java开源中文分词的使用方法以及分词结果对比代码,至于效果哪个好,那要用的人结合自己的应用场景自己来判断。
11大Java开源中文分词器,不同的分词器有不同的用法,定义的接口也不一样,我们先定义一个统一的接口:
/**
* 获取文本的所有分词结果, 对比