机器学习(3): 线性回归中 梯度下降法 和 最小二乘法的区别

在机器学习中,常看到线性回归有 最小二乘法 梯度下降法

线性回归——最小二乘法 参见之前的博客:线性回归——最小二乘法小结

线性回归——梯度下降法 参见之前的两个博客:

1) 机器学习简介,单变量线性回归——梯度下降法 

2) 多变量线性回归——梯度下降法 

那么梯度下降法 和 最小二乘法的区别呢,其实二者主要在求解找到最优解时存在一些区别。

 

二者区别:

1 最小二乘法

1) 一次计算即可得到最优解(全局最优解),但极小值为全局最小值;

2) 当特征数量 n 大于10000时,因计算矩阵逆的时间复杂度( {\rm{O}}({n^3}) )会很大;

3) 只适用于线性模型,不适用于逻辑回归等其他模型。

 

2 梯度下降法

1) 需要选择学习率 \alpha,需要多次迭代找到最优解(局部最优解),极小值为局部最小值;

2) 当特征数量 n 大于10000时,也可以进行计算;

3) 适用于各种类型的模型。

总的来说,在机器学习中,最小二乘法只适用于线性模型(这里一般指线性回归);而梯度下降适用性极强,一般而言,只要是凸函数,都可以通过梯度下降法得到全局最优值(对于非凸函数,能够得到局部最优解)。梯度下降法只要保证目标函数存在一阶连续偏导,就可以使用。

 

 


参考资料

[1] https://blog.csdn.net/zaishuiyifangxym/article/details/82024155

[2] https://blog.csdn.net/zaishuiyifangxym/article/details/81976716

[3]  https://blog.csdn.net/zaishuiyifangxym/article/details/82024155

[4] https://blog.csdn.net/sinat_27652257/article/details/80657397

[5] https://www.cnblogs.com/wangkundentisy/p/7505487.html 

[6] 机器学习(西瓜书). 公式推导解析

你可能感兴趣的:(机器学习,机器学习专栏)